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Recently, several notions of entanglement in time have emerged as a novel frontier in quantum many-
body physics, quantum field theory, and gravity. We propose a systematic prescription to characterize
temporal entanglement in relativistic quantum field theory in a general state for an arbitrary subregion on a
flat, constant time slice in a flat spacetime. Our prescription starts with the standard entanglement entropy
of a spatial subregion and amounts to transporting the unchanged subregion to boosted time slices all the
way across the light cone when it becomes, in general, a complex characterization of the corresponding
temporal subregion. For holographic quantum field theories, our prescription amounts to an analytic
continuation of all codimension-two bulk extremal surfaces satisfying the homology constraint and picking
the one with the smallest real value of the area as the leading saddle point. We implement this prescription
for holographic conformal field theories in thermal states on both a two-dimensional Lorentzian cylinder
and three-dimensional Minkowski space, and we show that it leads to results with self-consistent physical
properties of temporal entanglement.
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I. INTRODUCTION time slice or appropriate algebraic quantum field theory
formalizations of this notion.

While this entanglement in space is arguably quite well
understood by now, the notion of entanglement in time is
not. In the first place, such a notion is not apparent from the
basics of quantum mechanics. Instead, it originates from
the field of tensor networks and attempts within it to lower
the complexity of algorithms modeling unitary time evo-
lution by devising clever contraction schemes leading to the
emergence of the paradigmatic matrix product state tensor
networks along the temporal rather than spatial direction
[11,12]. Such a structure allows one to define temporal
reduced density matrices of several kinds and obtain their
characterization in terms of Renyi entropies [11-15], or
their pseudoentropy generalizations to non-Hermitian
matrices [16].

In the context of relativistic quantum field theories, as
originally proposed in Refs. [17,18] (see also Ref. [19]),
closed-form expressions for single interval entanglement
entropy of conformal field theory (CFT) in two spacetime
dimensions allow for an explicit analytic continuation to a
temporal domain, leading to a notion of timelike entangle-
ment entropy. For example, in the vacuum state in
Minkowski space for a single interval of length Ax, the
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Entanglement and its entropy have been among the very
few key notions shaping the development of theoretical
physics in the last two decades. Impressive progress
includes the establishment of entanglement-inferred tensor
network algorithms for ab initio simulation of quantum
many-body systems on classical computers [1,2], the
characterization of topological orders [3], shedding light
on thermalization of closed quantum systems [4,5], a new
understanding of irreversibility of renormalization group
flows in quantum field theory [6], and the geometrization of
quantum field theory entanglement within the holographic
duality [7-9] as well as studying its implications for the
black hole information paradox [10]. All these paradigm-
shifting developments stem from the standard notion of
entanglement entropy associated with a bipartition of
quantum systems into spatial subregions on a constant
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where ¢ is the central charge and ¢ is a short-distance
cutoff [20,21]. The analytic continuation in question
amounts to the replacement Ax — iAt, yielding a quantity
of the same logarithmic dependence but now on Af¢ and
having a constant imaginary offset

c. At =&

S—3log5+z6c, (2)
where the principal branch of the logarithm function is
picked. Recently, it was shown in one particular example
that a similar analytic continuation agrees with the gener-
alization of the von Neumann entropy computed using
temporal matrix product states, connecting the two hitherto
independent lines of research on temporal entanglement
[22]. In Refs. [17,18], the quantity encapsulated by Eq. (2)
was referred to as timelike entanglement entropy (and for
strongly coupled quantum field theories with a large
number of microscopic constituents, it was referred to as
holographic timelike entanglement entropy).

While our ability to explicitly compute entanglement
entropy in a generic quantum field theory is very limited
and closed-form expressions like Eq. (1) are extremely
scarce, for strongly coupled quantum field theories with a
large number of microscopic constituents, the entanglement
entropy has proven surprisingly simple to obtain. In this
case, the entanglement entropy is given in terms of the area
A of the extremal surface attached to the spatial subregion
of interest lying on the asymptotic boundary of the higher-
dimensional geometry where holographic quantum field
theories are defined (see Refs. [23,24] for the original
proposals, Refs. [25-27] for approaches to a derivation, and
Refs. [7-9] for reviews). More precisely, it is given by the
associated Bekenstein-Hawking entropy

A

S=-——.
4Gy

(3)

where Gy is the gravitational constant in holography. Given
the simplicity of how holography geometrizes entangle-
ment entropy and the aforementioned scarcity of exact
expressions for entanglement entropy in other quantum
field theories, it is natural to expect that key progress on our
understanding of temporal entanglement in quantum field
theory will occur through AdS/CFT.

Since temporal entanglement in quantum field theory
can be defined by an analytic continuation, it should come
as no surprise that, holographically, the relevant geometric
notion will be an analytic continuation of the extremal
surfaces geometrizing entanglement entropy, such that they
are anchored on a timelike subregion. In Ref. [28], we
identified that such extremal surfaces will be complex, in
general; i.e., they perceive the bulk geometry for complex
rather than real spacetime coordinates. This finding con-
nects with earlier holographic studies of complex geo-
desics, which are one-dimensional extremal surfaces, in the

context of approximating boundary correlation functions
[29-31]. The key difference from the holographic dual
proposed earlier by Refs. [17,18] is that the complex
extremal surface is a fully covariant object and not a
piecewise surface obtained by a union of real extremal
surfaces with different signatures (see Ref. [28] for a
detailed comparison between the two).

The key open problem that we address in the present
article originates from the existence of multiple complex
extremal surfaces satisfying the same boundary condition.
This problem appears, for example, in the paradigmatic
example of black hole spacetimes corresponding to thermal
or thermofield double states in dual quantum field theory in
three and more spacetime dimensions [28]. In the present
paper, we identify another important instance where there
are multiple complex extremal surface candidates to define
holographic timelike entanglement entropy.

In the context of entanglement entropy, it is clear how to
proceed when there are multiple extremal surfaces [32,33]:
All real extremal surfaces homologous to the subregion
give saddle-point contributions to the holographic entan-
glement entropy, and the one with the smallest area is the
dominant one. The remaining saddles give subleading
contributions to the holographic entanglement entropy,
exponentially suppressed in the difference of areas with
respect to the leading saddle. The presence of multiple
saddles in the holographic entanglement entropy is respon-
sible, for example, for entanglement entropy being con-
sistent with the cluster decomposition principle of quantum
field theory.

What we propose in the present work is a prescription for
computing holographic timelike entanglement entropy
even if there are multiple nontrivial complex extremal
surface candidates. Our guiding principle is that the
quantity we define holographically respects the UV-IR
correspondence [34]. In particular, the key self-consistency
condition for us will be that, for sufficiently small temporal
subregions in general excited states, this quantity reduces to
the vacuum state answer.

We define timelike entanglement entropy in terms of
entanglement entropy by “rotating” the entangling region
from spacelike to timelike, going around the light cone as
illustrated in Fig. 1, which, in particular, transforms Eq. (1)
to Eq. (2). We propose the following steps:

(1) Identify the complex extremal surfaces that can be
obtained via such analytic continuation past the light
cone of the real extremal surfaces relevant for
(spacelike) holographic entanglement entropy.

(2) Among these configurations, choose the one that
minimizes the real part of the area.

As we show, because of the properties of entanglement
entropy for spatial subregions in the vicinity of the light
cone, in holography, this analytic continuation respects the
UV-IR correspondence and reproduces the vacuum answer
for small subsystems in an excited state. As a result, in
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FIG. 1. (a) Geometrical analytic continuation of the boundary
region R. Starting from a region that lies on a constant time slice
(1), the light cone is crossed by slightly complexifying the angle
when still in the spacelike regime (2). Once the timelike regime is
reached (3), the angle can be increased further to attain purely
temporal separations (4). (b) Trajectory followed by the angle € in
the analytic continuation. The light cone is crossed by evading the
divergence associated with the proper size of the subregion going
to 0 when 6 = /4 with a circle of arbitrarily small radius ¢ in the
complex 6 plane.

holography, our prescription for timelike entanglement
entropy is a natural generalization and a direct consequence
of the prescription for holographic entanglement entropy.

II. KEY IDEA
A. General quantum field theory

We consider quantum field theories primarily in d-
dimensional Minkowski spacetime. Later in the paper,
we also consider theories on a two-dimensional
Lorentzian cylinder, where the spatial direction is a circle.

We seek a purely Lorentzian approach to defining
timelike entanglement entropy. Extrapolating from
Egs. (1) and (2) and the results of Refs. [17,18], we
propose to define timelike entanglement entropy by the
analytic continuation of standard entanglement entropy as
the spacelike subregion is morphed into a timelike one.

We want to keep the embedding of the spacelike
subregion on the constant time slice fixed and “rotate”
this constant time slice in the longitudinal plane spanned by
the time 7 and a chosen spatial direction x; see Fig. 1(a). The
rotation is specified by an angle 6 running between 0 (the
original spatial subregion) and z/2. Past the light cone
located at @ = z/4, this approach produces subregions
extending along a timelike direction, as desired.

As in the case of Lorentzian correlation functions
obtained from Euclidean correlators, the subtlety lies on

the codimension-one hypersurface where the subregion
becomes null. There, the proper size of the subregion goes
to zero, and a UV regularization is required. We avoid this
singularity in the entanglement entropy by an infinitesi-
mally small detour into complexified Minkowski space. We
achieve this by complexifying the rotation angle around
0 =r/4 [see Fig. 1(b)]. Coming back to Lorentzian
correlators, our prescription can be thought of as a natural
generalization of real-time n-point functions to extended
objects: While here we pursue its application to entangle-
ment entropy, the same method could also be employed
with, for example, Wilson loops.

The procedure outlined above can be applied to any
analytic expression for entanglement entropy, such as
Eq. (1), and produce a timelike generalization, such as
Eq. (2). However, given the aforementioned scarcity of
such exact results, the true power of our approach lies in
allowing one to explicitly compute timelike entanglement
entropy in holographic setups, which is the focal point of
the present article.

B. Holography

In holography, when there exists only a single extremal
surface satisfying a given asymptotic boundary condition in
the spacelike regime—which is, by default, the single
contribution to holographic entanglement entropy—the
rotation outlined in Fig. 1 transforms it into a unique
complex extremal surface anchored on a now timelike
subregion. For example, this is the situation in holographic
conformal field theories in their vacuum state considered in
Ref. [28]. In this case, the idea of the continuous spacetime
transformation of a subregion that we introduced above
does not add much new information.

The situation changes significantly when multiple
extremal surfaces satisfy the homology constraint. As we
have previously noted, each of these surfaces should be
regarded as a saddle point, and saddle points are known to
exchange dominance depending on the parameters that
define them. This idea is well known in the holographic
literature and features prominently, for example, in holo-
graphic studies of the mutual information [32]. In the case
at hand, the varying parameter specifying the saddles
(extremal surfaces) is the angle 6 (see Fig. 1). The saddles
clearly also depend on the shape of the subregion, but we
keep it fixed.

As a result, the holographic implementation of the
spacetime transformation of Fig. 1 in the spacelike regime,
i.e., for 6 < /4 — &, requires us to keep track of all the
extremal surfaces obeying the homology constraint as a
function of . In particular, for a fixed subregion shape, this
number can change as a function of 4. Subsequently, all
these contributions to the holographic entanglement
entropy, the leading and subleading saddles existing at
0 =n/4—¢ with 0 < e <1, are analytically continued
past the light cone to the timelike regime, i.e., 8 > 7/4 + e.
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In the timelike regime, the dominant contribution to the
holographic timelike entanglement entropy comes, as
usual, from the saddle that has the smallest real value of
the area. Crucially, this result does not necessarily imply
that this contribution dominates the holographic entangle-
ment entropy because taking the leading saddle in the
spacelike regime associated with the limit G, — 0 does not
necessarily commute with the analytic continuation.

In subsequent sections, we will explicitly apply this
prescription to the four-dimensional black hole dual to a
thermal state in a three-dimensional holographic conformal
field theory in Minkowski space (see Sec. III) and to the
three-dimensional black hole dual to a thermal state in a
two-dimensional conformal field theory on a Lorentzian
cylinder (see Sec. IV).

C. Comments

It is important to emphasize that the prescription outlined
above is valid for any state in flat spacetimes and for any
flat subregion.

Furthermore, the light-cone regulator e should be under-
stood in the limiting sense, i.e., ¢ — 0. Since ultimately in
generic cases holographic entanglement entropy is calcu-
lated numerically, in practice, the limit is probed by taking
progressively smaller but nonzero ¢ and seeing indications
of numerical convergence.

In contrast to the holographic entanglement entropy,
which one can compute by considering the portion of the
bulk limited by future- and past-pointing light rays ema-
nating from the subregion, our definition of holographic
timelike entanglement entropy necessarily requires the
understanding of all saddle-point contributions to the
holographic entanglement entropy right before the light
cone is crossed as the parameter @ is varied and then
transforming them to satisfy the desired boundary con-
dition given by the timelike subregion. As a result, holo-
graphic timelike entanglement entropy as we define it, at
least at this superficial level, requires more information
about the bulk than the holographic entanglement entropy.

Moreover, it is easy to understand how the UV-IR
correspondence emerges from our prescription. Note that
the transformation outlined in Fig. 1 keeps the shape of the
subregion intact. As the light cone is approached from the
spacelike domain where the quantity one computes is
holographic entanglement entropy, the proper size of the
subregion along one of the directions goes to zero as a
result of the Lorentz contraction. This process makes the
subregion a very thin slab for which one expects the
extremal surface that gives the dominant contribution to
the holographic entanglement entropy to lie very close to
the asymptotic boundary. Subsequently, this universal
contribution that is sensitive to the vacuum physics is
analytically continued to the timelike regime.

In addition, let us emphasize that keeping the shape of
the subregion rigid during the rotations, which we view as a

natural condition to impose, eliminates most of the poten-
tial ambiguities in the analytic continuation of the entan-
glement entropy. The only ambiguity remaining is related
to going “below” or “above” the light cone (see Fig. 1). It
should be contrasted with correlators of local operators
where analytic continuation from a constant time slice
suffers from substantial (and natural) ambiguities related to
the ordering of operators.

Finally, we want to acknowledge that earlier works that
study the changes of entanglement entropy under rotations
include Refs. [35,36]. While Ref. [35] focuses on spacelike
slices, the results in Ref. [36] involve analogs of spacetime
rotations in quantum spin chains in one spatial dimension.
In particular, the latter indicates our prescription can be
systematically studied in quantum many-body systems
using tensor network methods or by focusing on
Gaussian states.

III. HOLOGRAPHIC THERMAL STATE ON R!?2

In the present section, we employ the prescription
advocated in Sec. II to interpret the multiple complex
extremal surfaces from Ref. [28]. The paradigmatic setting
in question consists of a four-dimensional black-brane
spacetime and a strip subregion on the boundary (see
Fig. 2). The holographic entanglement entropy for a strip
subregion with € = 0 is considered in Ref. [37], and the
holographic timelike entanglement entropy candidate
extremal surfaces for a strip subregion with 6 = z/2 is
discussed in Ref. [28]. In the present section, we morph the
results from @ =0 into @ = z/2 and show that, in the
timelike regime, our prescription picks the extremal sur-
faces that fulfill the UV-IR correspondence. In particular, it
will forbid one class of extremal surfaces from contributing
for sufficiently small subregions.

A. Setup

The strip subregion of interest lives in the three-dimen-
sional Minkowski spacetime located at the z = 0 asymp-
totic boundary of the four-dimensional bulk geometry,

t

FIG. 2. Geometry of a strip boundary subregion R in three-
dimensional Minkowski space. The strip is rotated in the r-x
plane, keeping the coordinate extent Ar fixed. See Fig. 1 for the
case of a general subregion.
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d2
wZ:%(ﬂ%-f@mﬂ+dﬁ>, (4)

Z

where we have set the curvature scale to one. The choice
f(z) =1 corresponds to the empty anti-de Sitter (AdS)
space, dual to the vacuum state of the boundary conformal
field theory, whereas f(z) = 1 — (z/zy)? corresponds to a
black brane with the horizon located at z = zy, dual to a
thermal state.

Splitting the boundary spatial coordinates as x = {x, x| },
the strip is defined as

R ={(t,x):t =rsinf,x = rcosf, re|0, Ar],x” eR},
(5)

where 6 is fixed. The projection of the strip R on
the x—¢ plane is a segment joining the origin with the point
(Arcos 0, Arsin@). The strip is spacelike for 6 € [0, z/4),
null for @ = z/4, and timelike for 8 € (z/4, z/2]. The case
considered in Ref. [28] corresponds to 8 = z/2. See Fig. 2
for an illustration of the setup.

By symmetry, the codimension-two bulk extremal sur-
face yr takes the form

XH(A) = {zs(4), 1,(4), x4(4), ) }, (6)

where 4 is a parameter moving along the variable part of the
surface. Given this result, we need to extremize the area
density functional,

A o Fz )2 + 22
szz/wﬁz/ﬂ 1) G

4

to find the entropy density S = .A/(4Gy). In this expres-
sion, V stands for the (formally infinite) volume of the line
spanned by x.

The area density in Eq. (7) is a UV-divergent quantity. In
the following, we extract this UV divergence and work with
the regularized area density

, 2
Areg = (131_[)1(} <—'4 - 5) ’ (8)

where 6 < 1 corresponds to the location of the regularized
asymptotic boundary in the radial direction of the bulk
spacetime, z = 6. Correspondingly, we also define

_ Areg
T 4Gy

Sreg ©)

as the regularized entropy density.
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FIG. 3. Left panel: width of the strip Ar as a function of the

position of the entangling surface tip z, in the bulk spacetime.
Right panel: regularized area density of the strip A, as a
function of the strip width Ar.

B. Holographic entanglement entropy
for a horizontal strip

The calculation of the entanglement entropy of a space-
like strip with @ = 0 is a standard problem in holography.
One finds that, for a given width Ar, there is a single,
real entangling surface. In the Ar — 0 limit, the tip z;
of this entangling surface approaches the asymptotic
boundary z =0, while in the opposite Ar — oo limit,
the tip approaches the black brane horizon z = zg.
Correspondingly, for Ar — 0, the regularized entanglement
entropy approaches its value in the vacuum state and
diverges as Ar~!, while for Ar — oo, it grows linearly
in Ar with a slope governed by the location of the event
horizon. See Fig. 3 for an illustration of these facts.

C. Holographic timelike entanglement entropy
for a vertical strip

Reference [28] studied the holographic timelike entan-
glement entropy for timelike strips with = /2. One of
the main findings of Ref. [28] was that the space of
complex extremal surfaces associated with this boundary
subregion comprises two classes of solutions, referred to as
vacuum-connected and vacuum-disconnected solutions.
Each class of solutions consists of two branches related
to each other by complex conjugation. See Fig. 4 for the
location of these branches in the complex z, plane, with
blue (green) curves denoting the location of the vacuum-
connected (vacuum-disconnected) solutions. The regular-
ized area density Ay, of these solutions is shown later in
Fig. 11, where we discuss the prediction of our holographic
timelike entropy prescription.

The main properties of the vacuum-connected and
vacuum-disconnected branches of complex extremal sur-
faces are as follows:

(i) For Ar — 0, the tips of the vacuum-connected
branches (blue curves in Fig. 4) flow to the location
of the asymptotic boundary z, — 0, while the tips of
the vacuum-disconnected ones (green curves in
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FIG. 4. For a strip with @ = /2, z, for all the known complex
extremal hypersurfaces in an AdS,-Schwarzschild black brane.
Blue (green) curves correspond to vacuum-connected (vacuum-
disconnected) solutions. Horizons [understood as roots of
f(z) =0, see Eq. (4)] are represented as black stars, and critical
extremal surfaces as red crosses. This plot appeared earlier
in Ref. [28].

Fig. 4) flow to |z;| = oo. Correspondingly, in the
Ar — 0 limit, the regularized area density of the
vacuum-connected branches approaches the purely
imaginary vacuum answer,

. C3 47TF(%)2
Areg = ZE’ €3 = F(%)z ) (10)

while the regularized area density of the vacuum-
disconnected ones goes to a complex constant with a
negative real part, given by

2(—1+3)20(3) a1

F(%)ZH '

We note that, in the vacuum case, there is a single

complex extremal surface that can contribute to the

timelike entanglement entropy. As shown in

Ref. [28], the area density of this surface, given

in Eq. (10), reproduces the holographic timelike

entanglement entropy obtained from the analytic

continuation of the closed-form expression for the
entanglement entropy of a spacelike strip [18].

(ii) For Ar — oo, the tips of each branch flow to the
location of a critical extremal surface for which
z4(4) = z. €C. From this observation, it follows
that, in the Ar — oo limit, the regularized area
density of each branch grows linearly in Ar, with
a slope determined by the corresponding critical
extremal surface. The location z. of the critical
extremal surface is fixed by the requirement that the
Lagrangian (7) evaluated on z, is stationary [38],

=0. (12)

In the case at hand, this equation allows for three
solutions, one real and two complex conjugated:
7] = 2§zH, Zp = 2%6%21-1, and z3 = 2§e‘%zﬁ. These
solutions are depicted as red crosses in Fig. 4; we
clearly see that the vacuum-disconnected branches
end in z;, while the upper (lower) vacuum-discon-
nected branch ends in z, (z3). The Ar — oo behavior
of the regularized area density following from the
location of the critical extremal surfaces is

1

35 L Ar 3 Ar
A ~ et =, Ne ~ 7. (13
eg B e’ Z%—[ eg 2%1 Z%—] ( )

The key problem left open by Ref. [28] was how these
different classes of complex extremal surfaces contribute to
the holographic timelike entanglement entropy. In particu-
lar, note that minimizing over ReA,, to select the dominant
saddle would entail that, in the Ar — 0 limit, the relevant
solutions are the vacuum-disconnected ones; hence, the
holographic timelike entanglement entropy thus defined
does not reduce to the vacuum answer. Armed with the
prescription put forward in Sec. II, we will return to this
crucial question in Sec. III F below.

D. Entanglement entropy in the vicinity of the light cone

One of the key questions we have to address is how,
under the analytic continuation described in Sec. II, the
single branch of real extremal surfaces associated with a
spacelike strip with & = 0 gives way to the four branches of
complex extremal surfaces associated with a timelike strip
with @ = z/2. To start answering this question, in this
subsection, we explore the behavior of the holographic
entanglement entropy when a spatial strip with § < z/4
approaches the null limit 8 = z/4.

Our first main result is that, as & — /4, past a critical
angle 0., there exists a first-order phase transition in the
entanglement entropy as Ar increases at fixed 6. At this
first-order phase transition, the entangling surface yr
changes discontinuously, and its tip z, goes from being
located close to the asymptotic boundary to being located
close to the event horizon.

In the top panel of Fig. 5, we plot Ar as a function of z,
for values of 6 progressively closer to 7/4. We clearly see
that, as e = z/4 —0 — 0, Ar transitions from being a
monotonic function of z, to having a local maximum and a
local minimum. Let the local maximum and minimum be
associated with widths Arg,(€), Arpna(e) and tips
Zrmax (€)s Zrmin(€), respectively. These extrema naturally
divide the entangling surface candidates into three
branches:
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FIG. 5. Top panel: width of the strip Ar as a function of the tip
of the extremal surface z, for various values of @ = cot™! (1 +7),
where 7 represents the deviation from the light cone. Vacuum-
connected, unstable, and horizon-connected branches for each 6
correspond, respectively, to solid, dotted, and dashed lines. Bottom
panel: regularized area density A,, as a function of Ar for various
angles. Bach A,, has been shifted by log[(7/4) — 6]* to prevent the
curves from overlapping at large Ar.

(i) Vacuum connected, with 0 <z, < z, . (), de-
picted as solid curves.
(ii) Unstable, with z, .x(€) < z; < Z;.min(€), depicted as
dotted curves.
(iii) Horizon connected, with z,.,(€) <z, <z, de-
picted as dashed curves.
For strips with Ar < Arpi,(€) or Ar > Arp,,(€), there is a
single extremal surface that can contribute to the entangle-
ment entropy, while for strips with Ar&[Ar i, (&), Armax (€)],
there are several. In the latter case, the holographic entan-
glement entropy prescription instructs us to select the one
with the minimal area density, as all of them obey the
homology constraint. As Ar increases, this competition
leads to a first-order phase transition where the entangling
surface jumps from the vacuum-connected branch to
the horizon-connected one at a critical separation Ar,.(¢) €
[Armin(€), Arma (€)]. The unstable branch is always

,"
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\\\‘~
1077 106 10 104
€

FIG. 6. Top panel: z,,.c/zy as a function of & (red dots)
together with a fit to a €'/3 power law (black dashed line). Bottom
panel: Ar,../zy as a function of & (red dots) together with a fit to
a e l/o power law (black dashed line).

subdominant. See the bottom panel of Fig. 5 for a plot of
the regularized area density A, as a function of Ar for
various angles. The emergence of the swallowtail associated
with the first-order phase transition as ¢ - 0" is manifest
from the plot.

Our numerical results are compatible with the fact that,
as € —» 0 and the null limit is approached, z, (&) and
Arpin(€) saturate, while z, ;.. (€) = 0 and Arp,, (&) = 0.
See Fig. 6 for a plot of z; .« (€) (top panel) and Ar,, ()
(bottom panel), where we show that, in the € — 0 limit,
these quantities behave as

Z1,max (8) ~ 8% Armax(e) ~ 8_% (14)

ZH ZH

These results imply that the window of widths for
which a first-order phase transition is possible, Are
[Arpin(€), Armax(€)], is bounded from below and
unbounded from above as ¢ — 0. The critical width at
which the phase transition itself takes place, Ar.(e), also
diverges in the same limit. For future reference, we define
Ary. = lim,_ o Arp,(€) & 10.486z5. Note that, in light of
these results, for a given Ar, it is always possible to pick 6
sufficiently close to z/4 such that Ar/Ar, is arbitrarily
small, z,/zy is arbitrarily close to zero, and, as a conse-
quence, the regularized entanglement entropy S, is

arbitrarily close to its vacuum value. This fact can be
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understood as a manifestation of the UV-IR correspondence
at the level of the entanglement entropy since, in the
6 — /4~ limit, the proper width of a strip with fixed Ar
goes to zero.

Finally, we point out that the first-order phase transition
we have uncovered can be understood as emerging from a
collision between real and complex branches of extremal
surfaces. This fact follows from the observation that, even
though for € < /4 the boundary subregion is spacelike,
there still exist complex-conjugated branches of complex
extremal surfaces emanating from both z; .« and z, .
Moving away from z, .. along these complex branches
takes one to progressively larger Ar > Arp.., While mov-
ing away from z, .,;;, along them takes one to progressively
smaller Ar < Ary,;,. Upon complexification of the angle 6,
the branch collisions are resolved, and one finally obtains
three smooth branches of extremal surfaces, which are now
correspondingly complex. For Imé@ — 0~, the branch
rearrangement is as illustrated in Fig. 7:

(i) The vacuum-connected branch of real extremal sur-
faces merges with the upper branch of complex
extremal surfaces emanating from z; ... The location
of this complexified vacuum-connected branch in the
complex z, plane is depicted in blue in Fig. 7. The
value of z; ,.x, Where the leftmost branch collision
took place, has been marked with an open circle.

(ii) The lower branch of complex extremal surfaces
emanating from z, ., the unstable branch of real
extremal surfaces, and the lower branch of complex
extremal surfaces emanating from z, ., all merge.

1.0}
0.5}

T

2 I

\.,_) 00' ~ *

& = '

g

i
—0.5}
_1.0:1 1 1 1 1 1 1 1

00 02 04 06 08 1.0 12 1.4
Re(z/zm)
FIG. 7. Relevant branches of complex extremal surfaces for

0 = /4 —10"* = 107% as Ar is varied. The vacuum-connected,
unstable, and horizon-connected branches of real extremal
surfaces now, respectively, belong to the blue, brown, and
magenta branches of complexified solutions. The event horizon
is denoted by a black star, the location of z; j.x (Z;min) for 6 =
7/4 —10~* by open (filled) circles, and the tips of the critical
extremal surfaces to which the complexified vacuum-connected
and unstable branches flow as Ar — oo by red crosses.

The location of this complexified unstable branch in
the complex z; plane is depicted in brown in Fig. 7.
The value of z,.;,, where the rightmost branch
collision took place, has been marked with a full
circle.

(ii1)) The horizon-connected branch of real extremal
surfaces merges with the upper branch of complex
extremal surfaces emanating from z, ;,. The loca-
tion of this complexified horizon-connected branch
in the complex z, plane is depicted in magenta
in Fig. 7.

E. Analytical continuation past the light cone

According to the prescription put forward in Sec. II, to
compute the timelike entanglement entropy of a strip with
width Ar and tilt 8 > z/4, we first have to select the real
extremal surfaces contributing to the entanglement entropy
of a strip with the same width and § = z/4 — 0". Then, we
analytically continue these real extremal surfaces around
the light cone and finally pick among the resulting complex
extremal surfaces the one with the smallest real part of the
area density.

Our choice of analytical continuation is encapsulated in
Fig. 1(b). We fix Ar and choose § = 7/4 — e with e =07
Then, we set

9:%—(36[“, (15)

keep ¢ fixed, and follow the initial real extremal surface as
a goes from 0 to 7. The end result is a complex extremal
surface associated with a timelike strip with 0 = z/4 + ¢.
Finally, we follow this complex extremal surface as € goes
from z/4 + € to z/2. We carry out this procedure numeri-
cally by working with a small but finite . We note that,
since for a given Ar it is always possible to choose ¢
sufficiently small so that Ar < Arp,,(¢), below we will
only consider the cases where Ar < Ary,(e) and Are
[Armin(‘?)’ Armax(e)]'

In the case Ar < Arp,(€), only real extremal surfaces
belonging to the vacuum-connected branch can contribute
to the holographic entanglement entropy for 6 — z/4.
Our second main result is that, for this branch, the analytic
continuation described above maps the initial real
extremal surface at @ < z/4 to a solution at & = z/2 that
belongs to the upper vacuum-connected branch of complex
extremal surfaces, depicted in blue in Fig. 4. Crucially, this
implies that, for Ar < Ary;, (&), the vacuum-disconnected
branches of complex extremal surfaces at 0 = z/2,
depicted in green in Fig. 4, do not correspond to the
analytic continuation of real entangling surfaces and hence
cannot contribute to the timelike entanglement entropy as
we have defined it. This fact is critical for our holographic
timelike entanglement entropy prescription to uphold the
UV-IR correspondence.
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As an illustration of these results, in Fig. 8, we show how
the analytic continuation works in the ¢ = 10™* case. In the
top panel, we plot the trajectories traced in the complex z,
plane by the extremal surfaces with Ar/zy =1, 2, 4, 6, 8,
and 10, all smaller than Arpy;,(107%)/zy4 ~ 10.44, as 6
varies along the path in Eq. (15). Each curve starts on the
real axis at a =0 and ends on a point with a nonzero
imaginary part at @ = z, showcasing the complex nature of
the extremal surface associated with the final timelike strip
with @ = z/4 + 107*. The bottom panel of Fig. 8 demon-
strates that these complex surfaces, when @ is taken from
7/4 +107* to /2, always end up in the upper vacuum-
connected branch of solutions shown in Fig. 4 and depicted
in the bottom panel of Fig. 8 as a blue curve.

0.12f
0.10f
___o.08f
S [
~. 0.06+
3
g 0.04f
= [
0.02f ’\
L9
0.00f .\- {
0.00 0.05 0.10 0.15
Re(z:/zm)
— Ar/zp=1 — Ar/zpy=2 = Arjzy=4 — Ar/zy=6
— Ar/zg =8 Ar/zg =10 Ar/zg =12 Ar/zy =14
1.5F
"= 10}
) L
ey
2
._.E I
0.5+
0.0 S S S R S SRS "
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Re(z/zn)
FIG. 8. Top panel: complex z,-plane trajectories of extremal

surfaces associated with strips with Ar/zy = 1,2, 4,6, 8, 10, 12,
and 14 and initial @ = /4 + 107, as @ varies along the path in
Eq. (15). Bottom panel: same as top panel, with 8 going from
7/4+107* to x/2. The upper vacuum-connected branch of
complex extremal surfaces at @ = /2 is depicted in blue as in
Fig. 4. The black star corresponds to a complex black hole
horizon.

In the case Ar€[Ary,(€), Arma(€)], as 6 - /47,
several real extremal surfaces can contribute to the entan-
glement entropy. Therefore, to identify the complex
extremal surfaces relevant to the timelike entanglement
entropy computation, we must consider the analytic con-
tinuation of not only the vacuum-connected branch of real
extremal surfaces but also the unstable and horizon-con-
nected ones.

In this range of Ar, the analytic continuation of the
real saddles in the vacuum-connected branch proceeds
analogously to the Ar < Ary,(¢) case. See the curves
corresponding to Ar/zy =12 and 14, all larger than
Arpin(1074)/zy; and  smaller than Arp,, (107)/zy ~
14.17, in both the top and bottom panels of Fig. 8.

On the other hand, we find that, if we analytically
continue around the light cone as in Eq. (15) and then take
6 — r/2, real saddles in both the unstable and horizon-
connected branches flow to the vacuum-disconnected
branches of complex saddles depicted in Fig. 4. This finding
is our third main result in this section. A subtlety arises for a
fixed Ar as @ — x/2: at some intermediate angle 8, < 7/2,
the solution originating from the unstable branch collides
with the one from the horizon-connected branch. This
collision makes it ambiguous to determine which solution
connects to which vacuum-disconnected branch at
6 = n/2. To resolve this ambiguity, we introduce a small
imaginary part to @ and define the branch assignment by
taking the limit Im § — 0, mirroring the discussion leading
up to Fig. 7. Following this prescription, for Im8 < 0, we
find that solutions from the unstable (horizon-connected)
branch flow to the lower (upper) vacuum-disconnected
branch at @ = z/2. For the choice Im@ = —107%, this
behavior is illustrated in Fig. 9, where we plot the
trajectories traced in the complex z, plane by the unstable
(dashed curves, starting and ending in solid circles) and
horizon-connected (solid curves, starting and ending in
solid squares) complexified extremal surfaces as Ref
ranges from z/4 —10™* to z/2. We have chosen the
pairs of unstable and horizon-connected complexified
extremal surfaces to be associated with widths Ar/zy =
11, 12, 13, and 14, all in between Ary,,(107*)/z and
A¥pin(107%) /2. Note that these results explain why the
vacuum-disconnected branches at 6 = z/2, originally
found in Ref. [28], had to exist in the first place.

Our analysis so far has established that, for Are
[A7nin(€), Armax (€)], the complex saddles in the vacuum-
disconnected branches at € = z/2 descend from real
saddles in the pre-light-cone regime. It is natural to wonder
where the remaining parts of these vacuum-disconnected
branches come from. Given the results presented in Fig. 7, a
natural guess is that, for Ar < Arp,(€), the vacuum-
disconnected branches at § = /2 descend from the pair
of complex-conjugated branches of complex saddles ema-
nating from z,;,(¢), whose regularized version upon
complexification of the angle € can be found in Fig. 7.
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FIG.9. ForIm@ = —107°, evolution in the complex z, plane of
four solutions with Ar/zy = 11, 12, 13, and 14 in each of the
complexified unstable (dashed curves) and horizon-connected
branches (solid curves) as Ref ranges from z/4 — 10 to z/2.
Clearly, solutions in the complexified unstable (horizon-
connected) branch end in the lower (upper) vacuum-disconnected
branch.

This expectation is confirmed by the results shown in
Fig. 10. In this figure, we reproduce the complexified
unstable (brown curve) and horizon-connected (magenta
curve) branches at 6 = z/4 —107* —i107%, originally
depicted in Fig. 7, and plot the trajectories described by
the complex extremal surfaces associated with widths
Ar/zy=3,4,5,6,7,8,9, and 10 in the complex z,
plane as Ref is increased to z/2, keeping Imé fixed.

1.0f
—~ 0.5F
T [ /
N L
5 0.0—¢ *
~— t N
g [ =
= —0.5;
-1.0f
0.6 0.8 1.0 1.2 1.4 1.6
Re(z/zn)
— Arfzy =3 — Ar/zg=4 — Arjzy=5 —— Ar/zp=6
- Ar/ay =7 Ar/zy =8 Ar/zyp =9 Ar/zy =10

FIG. 10. For Im6 = —107°, evolution of the complexified
unstable and horizon-connected branches at Re § = /4 — 10~
(cf. Fig. 7) as Re@ — x/2. Clearly, the complexified unstable
(horizon-connected) branch maps to the lower (upper) vacuum-
disconnected branch at Ref = z/2, shown here for Imf =0
in green.

The trajectories corresponding to the complexified unsta-
ble (horizon-connected) solutions start and end at solid
triangles (squares). As is manifest from the figure, at
0 = /2 — i107°, every solution in the complexified unsta-
ble (horizon-connected) branch has moved to the lower
(upper) vacuum-disconnected branch, depicted in green for
the Im@ = 0 case.

F. Area densities and timelike entanglement entropy

We are finally in a position to employ our prescription to
compute the timelike entanglement entropy. We begin by
examining the case 8 = z/2. The complex extremal sur-
faces have been shown in Fig. 4, and their corresponding
area densities are provided in Fig. 11, with blue (green)
curves corresponding to the vacuum-connected (vacuum-
disconnected) result.

To evaluate the timelike entanglement entropy, we must
consider two distinct regimes:

(i) First, for Ar < Ary, , our analysis from the previous
subsection shows that only the complex extremal
surfaces in the upper vacuum-connected branch
contribute; hence, the timelike entanglement entropy
computed according to our prescription upholds the
UV-IR correspondence by construction.

(i) Second, for Ar > Ar}. ., the vacuum-disconnected
branches of complex extremal surfaces also become
potential contributors, in addition to the upper
vacuum-connected branch. We must choose the
solution with the smallest real part of the area
density. As shown in the top panel of Fig. 11, in
this regime, the vacuum-disconnected branches
always have a larger ReA,, than the vacuum-
connected branch. As a result, the upper vacuum-
connected branch continues to dominate.

In conclusion, according to our prescription, the timelike
entanglement entropy for a strip with 8 = z/2 is always
determined by the upper vacuum-connected branch of
complex extremal surfaces. In Fig. 11, we have highlighted
this dominant contribution to the holographic timelike
entanglement entropy with a dashed yellow line.

The computation of the timelike entanglement entropy
for 6 € [z/4, /2] proceeds in an analogous way, and the
same conclusion follows, provided that for Ar > Ar}. the
area density of the vacuum-connected branch is lower than
the rest. Empirically, we find that this is always the case
except when 6 is very close to /4. In this immediate
vicinity of the light cone, the vacuum-disconnected
branches have smaller Re A,, than the vacuum-connected
one at Ar = Ar}. and, as a consequence, the timelike
entanglement entropy features a zeroth-order phase tran-
sition as soon as the vacuum-disconnected complex
extremal surfaces become available saddles. This zeroth-
order phase transition gives way to a first-order phase
transition at larger separations, where the vacuum-
connected branch becomes dominant again. See Fig. 12
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FIG. 11. Top panel: for a timelike strip with 6 = 7/2, real part

of the regularized area density A, for the vacuum-connected
(blue curve) and vacuum-disconnected (green curve) branches of
extremal surfaces. The dotted vertical line marks the location of
Arr’;ﬂn, with the vacuum-disconnected branches becoming avail-
able saddles to its right. The dominant contribution to the real part
of the timelike entanglement entropy according to our prescrip-
tion has been highlighted with a yellow dashed line. Bottom
panel: same as top panel, but for the imaginary part of the
regularized area density of the upper vacuum-connected and
vacuum-disconnected branches (the lower ones have the opposite
value of Im A,).

for an example with § = z/4 + 0.002. In this figure,
the contributions of the analytical continuation of the
vacuum-connected solutions are depicted in blue, while
the contributions of the analytical continuation of the
horizon-connected ones are depicted in magenta, just like
in Fig. 7 (the analytical continuation of the unstable branch
contribution is the complex conjugate of the horizon-
connected one, and it is not shown to avoid clutter).
Finally, the dominant contribution to the timelike entan-
glement entropy according to our prescription has been
highlighted with a dashed yellow line, as in Fig. 11.

25¢ ;
20; — Re(2pA%)

— Re(z2nAL%) __(-"
15j E e

25 30

AT/ZH

FIG. 12. Top panel: for a timelike strip with 8 = z/4 + 0.002,
real part of the regularized area density A, of the analytical
continuation of the vacuum-disconnected (blue) and horizon-
connected (magenta) branches (A, for the analytical continuation
of the unstable branch is the complex conjugate of the horizon-
connected one, and it is not shown). The dotted part of the curves
denotes that the corresponding quantity has been obtained through
a numerical extrapolation. The dotted vertical line marks the
location of Ary. . and the dominant contributions to the timelike
entanglement entropy according to our prescription have been
highlighted in yellow. Interestingly, in this case, minimization of
Re A, together with connectedness to holographic entanglement
entropy, induces a jump in ReA,. Bottom panel: same as top

panel, but for the imaginary part of the regularized area density.

We conclude this section with two comments. The first is
that, if we were to compute the timelike entanglement
entropy by minimizing over all available complex extremal
surfaces, we would find that, for a fixed 6, the vacuum-
disconnected solutions dominate at sufficiently small Ar.
Our analysis further shows that these vacuum-disconnected
solutions for @ > /4 originate from complex saddles at
0 < /4. Thus, the requirement that the timelike entangle-
ment entropy preserves the UV-IR correspondence suggests
that complex extremal surfaces should never be treated as
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contributing subleading saddles in holographic entangle-
ment entropy computations.

The second and final comment is that, given the presence
of the zeroth-order phase transition in the timelike entan-
glement entropy in the immediate vicinity of the light cone,
the reader might rightfully wonder why we have not
decided to simply define the timelike entanglement entropy
through the analytical continuation of the vacuum-con-
nected branch of real extremal surfaces, which, for a given
Ar, always gives the dominant contribution to the entan-
glement entropy infinitesimally before the light cone. In
particular, note that this choice would also naturally uphold
the UV-IR correspondence and, in addition, lead to a
smooth answer for all angles. Our main reason for not
pursuing this alternative definition is that in two-dimen-
sional conformal field theories—where entanglement
entropy is derived from a two-point correlator of twist
operators—we expect the timelike entanglement entropy—
defined via analytic continuation of this correlator—to
become singular whenever the insertion points are null
separated. As we will show in the next section, our
prescription naturally reproduces these null singularities,
whereas the naive analytical continuation of the saddle that
dominates immediately before the light cone does not.

IV. HOLOGRAPHIC THERMAL STATE ON R x S!

We now show that, also in two-dimensional holographic
conformal field theories with a compact spatial direction,
the prescription advocated in the present paper and outlined
in Sec. II gives a physically sensible result, as it correctly
identifies the presence of light-cone singularities when the
end points of the entangling region are null separated.
Indeed, in two-dimensional conformal field theories, the
entanglement entropy of a segment a is defined in terms of
a two-point correlator of twist operators o,,, 6, evaluated at
its end points, which implement the boundary conditions in
the replica manifold [21],

S, = lin} log (6,,6,,)- (16)

1-n
For a two-dimensional conformal field theory with a
compact spatial direction ¢ in the vacuum state, Eq. (16)
leads to

1 4 . At+A Ar—A
Sazﬁlog (;sin —; ¢sin 3 ¢), (17)

where At and A¢ are the coordinate differences between
the end points of the entangling region and 0 < 1 is again a
UV regulator [18,21]. The entropy in Eq. (17) is singular
when the two end points are null separated, i.e., At = A,
but also At = 2z — A¢. The latter condition arises due to
the compact nature of the spatial direction and can be
understood from the fact that, on a fixed spacetime slice,

any pair of points defines two intervals on the surface of the
Lorentzian cylinder R x S!, depending on the choice of
leaving an end point clockwise or anticlockwise. As these
singularities arise purely from geometrical properties of the
boundary spacetime and do not depend on the bulk
geometry, we will refer to them as kinematical singularities.

For this same reason, we expect such kinematical
singularities to arise in thermal and excited states, as well.
In these cases, the entanglement entropy for an interval
cannot be expressed in closed form from the conformal
field theory side. Still, it can be evaluated on the gravity
side, where multiple competing configurations arise due to
the presence of a nontrivial topological structure in the bulk
(conical defect or black hole horizon). The goal of this
section is to show that such divergences arise holograph-
ically only if the minimization over competing configura-
tions, according to the prescription outlined in Sec. II, is
applied after the analytic continuation through the light
cone. Hence, this example further shows that the two
operations, namely, selection of the dominant saddle by
minimization and analytical continuation, do not commute,
in general, emphasizing the need for the advocated pre-
scription, which specifies their ordering.

A. Setup

We consider the family of three-dimensional bulk
metrics parametrized by the real parameter y > —1,

d 2
ds? = —(p? — p)d#? +pz—/i’u+p2d¢2, (18)

where p >0, ¢ €0,2x), and the asymptotic boundary
where the dual conformal field theory lives is at p — .
Comparing with Eq. (4), p plays the role of 1/z, and we use
p as it is more convenient in the present setup.

All the geometries encapsulated by Eq. (18) represent the
time development of states of two-dimensional conformal
field theories on the Lorentzian cylinder R x S' of a unit
radius. When u = —1, the line element in Eq. (18) repre-
sents the gravity dual to the vacuum state. If —1 < y < 0, it
represents global AdS; with the insertion of a conical
defect at p = 0, which corresponds to an excited state.
Finally, if g > 0, the geometry in Eq. (18) describes the
BTZ black hole [39], dual to the thermal state with
temperature 7 = /p/(27).

B. Entanglement entropy on Cauchy slices

The entangling region of interest for this section is a
single interval specified by a pair of boundary spacelike-
separated points offset by Ar in time and A¢ in the angular
direction. The entanglement entropy is then computed in
terms of bulk geodesics connecting these points. For
u > —1,1i.e.,1in excited or thermal states, multiple geodesics
exist that are enumerated by their winding number n > 0
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around the conical defect at p =0 (if =1 < u < 0) or the
black hole horizon (if x > 0). All these different configu-
rations should be considered as potential duals to the
entanglement entropy. The geodesic connecting the region
end points with winding number n = 0 has length

A =log L%Q (cosh Ag/u —cosh Ary/u) |,  (19)

where we suppressed terms with positive powers of the UV
regulator 6. When —1 < p < 0, the hyperbolic functions
become trigonometric ones; hence, the entropy has a
periodicity that depends on the defect mass and coincides
with the spatial one only in the vacuum g = —1. When
u > 0, we have instead the typical linear behavior at large
separations, which is expected in a thermal state. A sketch
of such a geodesic in the case At = 0 is y, in Fig. 13(a).
A geodesic with generic winding number n has length
given by Eq. (19) with A¢p — 2zn — A¢g. Compare with y,
in Fig. 13(a) for a pictorial representation of the case with a
single winding (n = 1).

If At =0, i.e., the two points lie on the same constant
time slice, the holographic entanglement entropy follows a
well-known behavior: There exists a critical separation
A¢ = A¢, at which a phase transition occurs between the
configuration y, that does not wrap the defect (or the

(a) (b)

FIG. 13. (a) Sketch of two possible geodesics arising in the
BTZ black hole metric given by Eq. (18) with x > 0, when the
boundary interval a lies on a constant time slice: y, (blue) with
winding number n = 0, and y; (green) with n = 1. Note that the
latter includes an additional contribution around the black hole
horizon to respect the homology constraint. Geodesics with a
higher number of windings (not shown in the picture) also exist.
(b) Regularized length A, = A + 2logé for the two geodesic
configurations. While for small separations y, dominates, there
exists a value A¢, < 2z at which the two saddles exchange
dominance.

horizon) and y; that wraps the defect once. When
A¢ > A¢,, the length of y; becomes smaller than that
of yo [see Fig. 13(b)], and hence y; dominates. Note that
only the geodesics with the two lowest winding numbers
n =0, 1 are the ones that exchange dominance under the
criterion of selecting the one with minimal length [40].

When there is a black hole horizon in this setup, the
homology constraint plays a crucial role. The homology
constraint consists of the requirement that there exists a
codimension-one interpolating homology surface whose
only boundaries are the entangling surface y and the
boundary subregion a. It is usually motivated by the fact
that the causal wedge of the boundary subregion has to be
contained within its entanglement wedge [41]. As a
consequence, when y > 0, the wrapping configuration y,
includes a contribution coming from a disconnected piece
encircling the horizon [see Fig. 13(a)].

These considerations apply equally to intervals that lie
on tilted spacetime slices, i.e., whose end points are
separated by A¢ along the spatial direction and At along
time, provided that the two end points are spacelike
separated,

At < min (A, 27 — Ad), (20)

where the term 27 — A¢ originates from the compactness
of the spatial circle giving rise to two ways of connecting a
pair of points. Note that the condition in Eq. (20) can be
understood as the condition for the existence of a global
spatial (time) slice containing the subregion or, in other
words, by demanding that the complement is also spatial.
We will be interested in these more general tilted sub-
systems, as they are intermediate steps in the analytic
continuations being part of our prescription for holographic
timelike entanglement entropy.

When the condition in Eq. (20) is satisfied, the bulk
extremal surfaces (here, geodesics) are real and hence
potential contributors to the standard entanglement entropy.
The homology constraint is also understood in the same
manner as on the constant time slice considered above.

When the inequality in Eq. (20) saturates, then either a
subregion or its complement becomes null. This limit is
singular for entanglement entropy, and we will analytically
continue across it using our prescription (see Fig. 1).

C. Analytic continuation past the light cone

In the following, we employ the prescription outlined in
Sec. II in the three-dimensional bulk setup of Eq. (18). We
utilize

A¢p = Arcos@ and At = Arsiné. (21)
There are three key differences with respect to the case

studied in Sec. III, both originating from the compactness
of the spatial direction:
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(i) The maximal value of Ar that we can take, starting
with entanglement entropy, is naturally limited by
27. As a result, the outcome of the prescription
outlined in Sec. II at any value of the rotation
angle—in particular, at its maximal value 6 =
7/2—will be limited to Ar =2z. While in the
tensor network picture of temporal entanglement
there does not seem to be a need for such a
limitation, in this section, we just accept it as a
feature of the prescription relying on the analytic
continuation depicted in Fig. 1, and in Sec. V, we
will speculate on how to go beyond Ar = 2.

(i) The compact nature of the spatial direction leads to
the appearance of null singularities not only at 6 =
7/4 but also at the other values of & when the points
become connected via a null geodesics going across
the other side of the cylinder (see Fig. 14). Which
one is hit first depends on the value of Ar:

Ar < (1/4/2) x 2z: In this case, the rotation encoun-
ters only the familiar light-cone singularity when
the subregion itself becomes null at & = /4. This
singularity is avoided by a small detour into the
complex 6 plane as in Fig. 1. The subsequent
rotation to the timelike regime of 7/4 < 0 < z/2
does not encounter any additional singularities as
the complement remains spacelike, compare
with Fig. 14.

(1/v/2) x 2z < Ar < 2z: Full rotation to 6 = z/2
encounters three null singularities (see Fig. 14). The
first one, 0, is associated with the complement
becoming null, and only for 6 smaller than this
threshold value does the notion of entanglement

V2

FIG. 14. Emergence of null singularities along the rotation in
Eq. (21) as a function of the boundary interval size Ar. There is a
critical value Ar = 7v/2 below which only the singularity at
6 = /4 appears in the configuration with n =0 (blue dots).
For Ar > zv/2, instead, two more kinematical singularities
arise when the end points are null separated by hitting the light
cone emitted by the other end point (green dots, compare with
Figs. 15-17 for a plot of the divergences).

entropy still apply. The second null singularity is
associated with the subregion itself becoming null
and is still at 6, = z/4. The third one, 65, is
associated with the complement becoming null
again. The kinematical singularities arising from
the complement becoming null do not depend on
the state and are given by

P an 2E T V2V AP - 277
= arctan .
b 2+ V2VAR — 222

We deal with all these null singularities by the
excursion onto the complex @ plane, as in Fig. 1, but
at the respective real values of the angle.

(ii1)) Whereas in Sec. III all real extremal surfaces in the
spatial regime satisfied the homology constraint, this
is no longer the case here for u > 0, which has to be
taken into account before the analytic continuation
past the first light cone takes place.

Below, we discuss each class of solutions one by one, as
well as the emerging picture for the holographic timelike
entanglement entropy. We always consider the regime

(22)

Ar > /2, where all the kinematical singularities arise,
which will be a crucial element in testing our prescription.
(i) Vacuum (4 = —1): In the case of the empty AdS;
geometry, there is only one extremal surface for each
pair of points specifying the subregion and its comple-
ment. When both the subregion and its complement
are spatial, the surface is real and trivially satisfies the
homology constraint. The analytic continuation past
each singularity is therefore unique and does not carry

any ambiguity. See Fig. 15 for an example.

(i1) Conical defect (—1 < u < 0): In this case, multiple
configurations arise depending on their winding
number n around the conical defect. They feature
not only the kinematical singularities in Eq. (22) but
also bulk singularities associated with null connec-
tivity over the bulk; see, e.g., Refs. [42-45] for
corresponding discussions in the context of boun-
dary correlation functions. Bulk singularities depend
on the structure of the dual spacetime, in this case,
on the mass of the defect . As can be seen from
Fig. 16, bulk singularities arise up to a given
winding number, which also depends on the value
of . The homology constraint is again automatically
satisfied, as the minimal contour encircling the
defect has zero measure. However, the analytic
continuation is no longer unique, as when crossing
each singularity as described in Sec. II, there is an
ordering ambiguity between crossing the light cone
and selecting the configuration with a minimal real
part. This issue will be addressed at the end of this
section, showing that the prescription described in
Sec. II solves this ambiguity coherently with field
theory expectations.
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FIG. 15. Analytic continuation of holographic entanglement

entropy in the vacuum state, 4 = —1. The size of the boundary
interval Ar = 1.97 is fixed to be larger than the critical value 7v/2
past which additional kinematical singularities appear, and we vary
@ from O (constant time slice) to /2. Only the configurationn = 0
contributes in this case. Top panel: real part, which exhibits the
kinematical singularities. Bottom panel: imaginary part plotted
modulo 27, which assumes the value O or 7 depending on the end
points being spacelike or timelike separated.

(iii) BTZ black hole (u > 0): In this case, as expected,
the same kinematical singularities as in Eq. (22)
arise; see Fig. 17. An additional complication with
respect to the conical defect case is the homology
constraint, which now has to be carefully enforced at
any value of 0. As discussed before, on constant time
slices, the contribution from the homology con-
straint is typically taken to be the length of a curve
wrapping the horizon, i.e., 2z, /u, for any geodesic
that wraps the horizon an odd number n of times.
Intuitively, this condition emerges from the fact that
a geodesic with n even always has a piece around the
horizon that acts as a ‘“screen” for the others,
ensuring the existence of an interpolating surface
between the extremal surface and the boundary

4» I
2f
| > |
® O\ VN i
= :,‘, W I: ‘\:l'
R N A W
o' v — n=1 i g
—4r L i S : 4 ]
b ] - ] ‘L i
b ! I '
-6F - | — n=3 | !
ol | | — n=4 |
0.0 02 0.4 06 08 10
T
0/ =
/5
30} - oooo- —— |
I I I
qE 28¢ | |
| 20F | — n=0 |
o 15F | = |
< 1of T
= | | — n=3
— zj: i i —_— =4 i
. - = === . ‘:-.
-05t ‘ . ; ]
0.0 0.2 0.4 06 08 10
T
9/ =
/5

FIG. 16. Analytic continuation of holographic entanglement
entropy in the excited state dual to AdS; with insertion of a
conical defect, —1 < p < 0. The size of the boundary interval is
Ar = 1.9z, as in Fig. 15. Depending on the value of the defect
mass y, additional bulk singularities arise on top of the kin-
ematical ones that were already apparent in the vacuum state of
Fig. 15. The value of y also determines which configurations
contribute to the entropy: In this case, we chose the value
u = —0.2 to avoid clutter, and geodesics with n < 3 are relevant.
The dominant configurations selected by minimization are high-
lighted in yellow. Top panel: real part. Bottom panel: imaginary
part plotted modulo 2z, which still assumes the two discrete
values 0 and z. An n-dependent shift has been introduced for
readability.

subregion required to satisfy the homology con-
straint. This is not the case for n odd, as the
innermost part of the curve will always need a
further screen from an additional piece encircling
the horizon; see Fig. 13.

We now show how our prescription addresses the
kinematical singularities, focusing on the last two cases
(conical defect and BTZ black hole, y > —1), where
ambiguities in the analytical continuation arise due to
the existence of multiple extremal surfaces (here, geo-
desics). Consider the first kinematical singularity 6.
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FIG. 17. Analytic continuation of holographic entanglement
entropy in the thermal state dual to the BTZ black hole, u > 0.
The size of the boundary interval is Ar = 1.9z, as in Figs. 15 and
16, and u = 1. In this case, only geodesics with n < 2 contribute
to the entropy. The homology constraint is enforced for the
configuration n = 1 by adding the horizon length 27z,/u. The
dominant configurations are highlighted in yellow. Top panel:
real part. Bottom panel: imaginary part plotted modulo 2z, which
still assumes the two discrete values O and z. An n-dependent
shift has been introduced for readability.

According to the prescription of Sec. II, the entropy for
6 > 0, is defined by analytical continuation of all the real
geodesic configurations at 8 =0 up to 6, and then by
selecting the configuration with the smallest real part. Thus,
the minimization at € occurs after crossing the light cone at
0,. Keeping only the saddle with a minimal real part before
crossing the singularity at 6, instead, does not allow us to
reproduce the next singularities 8; > 6, as they can arise
from saddles that are not dominating at €;. This result
occurs whenever there is an exchange of dominance
between different saddles after the singularity 6, which
is often the case (compare with Figs. 15 and 16). The same
argument applies for all the other singularities, ;.

As a concrete example, consider, again, Figs. 15 and 16
and focus on the kinematic singularities. An exchange of

dominance arises between the configurations n = (0 and
n = 1 as a function of . Let us consider, for instance, the
singularity 6, = n/4 (any other singularity would lead to
the same result). Even if for & = 0 the configuration with
winding number n = 1 dominates (which is the case both
for the conical defect and the BTZ black hole), as the light
cone is approached, there is a phase transition such that
when 0 — 7/4~ the dominant configuration will always be
the one with n = 0. Indeed, in this limit, the lengths in
Eq. (19) are approximated by

A = log [% (cosh Vi (2”” - \A/_;) - cosh Ar\/@]

+o<9—§>. (23)

Clearly, in the § — 7/4~ limit, the dominant configuration
for any value of Ar is given by the geodesic with no
windings n = 0, as the length above diverges to —oo while
the others remain finite. From this kind of limit, it is always
possible to show that when a configuration with given n
diverges, the others remain finite; hence, minimization after
crossing the light cone will always pick the one exhibiting
the kinematical divergence. Finally, note that there can also
be light-cone divergences for fine-tuned values of Ar =

nry/2 such that the n-windings configuration is equally
divergent to —oco. This case does not affect the statement
that, in general, the dominant configuration does not
correspond to the one leading to the expected light-cone
singularities in the timelike regime.

As a consequence, if timelike entanglement entropy is
defined through the analytic continuation of the saddle
giving the dominant contribution to the entanglement
entropy immediately before crossing the first null singu-
larity 6, a geodesic with the same winding number will
dominate for any > 6, (compare with Figs. 15 and 16),
and the next null singularities at 0, > 0, will not be
detected. This observation shows that the saddle giving
the dominant contribution to the timelike entanglement
entropy after a null singularity has to be chosen by
minimizing the real part of the length affer performing
the analytical continuation of the relevant geodesic con-
figurations across the light cone, which provides further
support for the prescription outlined in Sec. II, as already
anticipated at the end of Sec. IIIF.

V. OUTLOOK

A significant portion of our understanding of quantum
field theory phenomena occurring at temporal separations,
such as subsequent measurements or the response of a
system to a local perturbation, is based on analytic
continuations of operator insertions in correlation functions
away from a Cauchy slice (constant time slice in some
foliation). In the present paper, building on earlier
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developments in Refs. [17,18], we applied the same
principle to entanglement entropy in quantum field theory
and defined the temporal entanglement by means of an
analytic continuation of an entangling region to acquire a
temporal extent. Our analytic continuation can be thought
of as a generalization of a kinematic space research
program (see Refs. [46-49]), which studies entanglement
entropy dependence on the shape and location of the
subregion, including how it changes as a function of both
space and time.

Within the kinematic space paradigm to date, the
subregions of interest (together with their complements
to be able to define a state) were bound by light cones. In
the present work, we propose to define temporal entangle-
ment entropy in Minkowski spacetimes in terms of a
spacetime transformation encapsulated in Fig. 1. The
transformation in question needs to be complexified in
order to go past the light cone. This spacetime rotation,
when applied to known closed-form expressions for entan-
glement entropy, reproduces the results of Refs. [17,18].

However, given the scarceness of exact expressions for
entanglement entropy, the key power of our idea lies in its
applicability to holography, where entanglement entropy
calculations amount to studying extremal surfaces in
higher-dimensional spacetimes. Within our approach, all
extremal surfaces that could contribute to holographic
entanglement entropy are analytically continued following
the change of the asymptotic boundary condition encapsu-
lated by Fig. 1. The holographic timelike entanglement
entropy is then computed by the resulting complex
extremal surface with the smallest real part of the area.

Our holographic investigations resolve the puzzle posed
in Ref. [28] regarding which complex extremal surface
should be chosen as the dominant contribution to holo-
graphic timelike entanglement entropy when multiple
candidates exist. We find that, among the complex extremal
surfaces obtained via analytic continuation of those rel-
evant for holographic entanglement entropy, the correct
choice is the one that minimizes the real part of the area.
Interestingly, the minimization aspect of our construction
leads to strong subadditivity of holographic timelike
entanglement entropy provided the real part of all involved
surfaces is nonzero. It would be very interesting to under-
stand if this subadditivity is a feature of holographic setups
or extends to the analytic continuation of entanglement
entropy in general quantum field theories.

More along these lines, we also uncovered a lesson about
holographic entanglement entropy itself: Self-consistency
of our prescription requires us not to consider complex
extremal surfaces as possible subleading (in the real part
of the area) contributions to holographic entanglement
entropy.

While in the present paper we studied two holographic
setups that were chosen to test different aspects of our key
idea, the prescription we outlined here is already made to

undertake a comprehensive exploration of temporal entan-
glement across the whole holographic entanglement
entropy landscape. Such studies would allow us to uncover
detailed properties of holographic timelike entanglement
entropy and, in particular, could lead to identifying phe-
nomena for which it arises as a natural quantity to consider.
The perspective that we have in mind originates from the
physics of correlation functions. For example, while it is
true that the shear viscosity of a quantum field theory in its
thermal state is encoded in a Euclidean correlator of the
energy-momentum tensor, it is much easier to access it
from an analytically continued correlator: the retarded one.
Although unknown to us at the moment, we expect there
are phenomena for which timelike entanglement entropy is,
in a similar vein, more natural to consider than the
entanglement entropy itself.

Another interesting aspect of our construction for future
studies is the connection with the notion of temporal
entanglement pursued in Ref. [S0]. We believe this con-
nection manifests itself in the two-dimensional conformal
field theory setup on a Lorentzian cylinder considered in
Sec. III. Our prescription, as it stands, does not allow us to
define temporal entanglement entropy for intervals of larger
extent in time than the circumference of the cylinder, as this
is the largest possible size of a spatial interval giving rise to
a standard notion of a state in quantum field theory.
However, if one were to consider spatial intervals wrapping
along the cylinder and of arbitrary length, then their
analytic continuation could be used as a definition of
timelike entanglement entropy for timelike intervals of
arbitrary extent. Upon a slight boost, such spatial intervals
of arbitrary lengths are reminiscent of the approach of
Ref. [50], as they would be spacelike subregions contain-
ing, nevertheless, timelike separated points.

Finally, it would be very interesting to study the analytic
continuation pursued in the present paper from the per-
spective of quantum many-body systems giving rise to
relativistic quantum field theories at low energies. For
example, while the kinematic singularities encountered in
Sec. IV should also be present in a regularized way on a
lattice (as they are associated with the causal structure of
the spacetime in which the quantum field theory lives),
what we identified as the bulk singularities should not be
present in a general, discrete, quantum many-body system.
Therefore, such studies have the potential of understanding
which features of timelike entanglement entropy in com-
putable examples are holography specific and which ones
might be more general and, perhaps, amenable to a general-
level proof or a higher-level physical argument.

Note added. Recently, we became aware of the results
of Nunez and Roychowdhury [51], who also explored
spacelike-to-timelike analytic continuations to define time-
like entanglement entropy in holography.
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