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Abstract

Background Significant efforts over the past decades have successfully reduced the global burden of malaria.
However, progress has stalled since 2015. In low-transmission settings, the traditional distribution of malaria along
vector suitability gradients is shifting to a new profile, with the emergence of hotspots where the disease persists. To
support elimination in this context, it is essential that malaria risk maps consider not only environmental and climatic
factors, but also societal vulnerabilities, in order to identify remaining hotspots and ensure that no contributing
factors are overlooked. In this paper, we present an integrated approach to malaria risk mapping based on the
decomposition of malaria risk into two components:‘hazard;, which refers to the potential presence of infected
vectors (e.g. influenced by rainfall and temperature), and ‘vulnerability;, which is the predisposition of the population
to the burden of malaria (e.g. related to health care access and housing conditions). We focus on Senegal, which

has a heterogeneous malaria epidemiological profile, ranging from high transmission in the south-east to very low
transmission in the north, and which aims to eliminate malaria by 2030.

Methods We combined data from several sources: the 2017 Demographic and Health Survey (DHS) (national
coverage) and the 2020-21 Malaria Indicator Survey (MIS) (south-east regions), as well as remotely sensed, high-
resolution covariate data. Using Bayesian geostatistical models, we predicted the prevalence of malaria in children
under five years of age with a spatial resolution of 1 km.

Results Including vulnerability factors alongside hazard factors in the 2017 DHS data model improved the accuracy
of predictive maps, achieving a median predictive R? of 0.64. Furthermore, models including only vulnerability factors
outperformed those including only hazard factors. However, the models trained on the 2020-21 MIS data performed
poorly, achieving a median R? of 0.13 at best for the model based on hazard factors, likely due to data collection
during the dry season.

Conclusions These findings highlight the importance of integrating both vulnerability and hazard factors
into predictive maps. Future work could validate this approach further using routine malaria data from health
management information systems, such as DHIS2.

*Correspondence:
Camille Morlighem
camille.morlighem@outlook.be

Full list of author information is available at the end of the article

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the

licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:/creati

vecommons.org/licenses/by-nc-nd/4.0/.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1186/s12879-025-11412-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-025-11412-5&domain=pdf&date_stamp=2025-8-13

Morlighem et al. BMC Infectious Diseases (2025) 25:1031

Page 2 of 24

[Keywords Demographic and Health Surveys, Malaria, Senegal, Hazard, Vulnerability, Bayesian geostatistical modelling]

Background

With the inclusion of malaria incidence reduction in the
Millennium Development Goals and the establishment
of the Roll Back Malaria initiative, the year 2000 marked
a major turning point in the fight against malaria, and
significant efforts have been made to control the dis-
ease over the past decades [1]. Between 2000 and 2015,
malaria mortality fell sharply from 864,000 to 586,000
deaths globally [2] due to a combination of increased
resources and improved interventions made possible by
effective malaria control tools such as artemisinin-based
combination therapies (ACTs) and insecticide-treated
nets (ITNs) [3, 4]. The first decades of the 21st century
were also marked by advances in disease risk mapping
pioneered by the Malaria Atlas Project [1, 5-7], which
may have contributed to this progress. However, since
2015, malaria cases and deaths have stagnated and even
increased in 2020 due to the disruption of health services
caused by the COVID-19 pandemic [2]. In 2023, malaria
deaths were still estimated at 597,000, with over 95%
occurring in Sub-Saharan Africa (SSA), predominantly
caused by the Plasmodium falciparum (P. falciparum)
parasite [8]. With reductions in malaria incidence of up
to 50-75% in high-burden countries in recent decades
[4, 9], we are now entering the next stage in the fight
against malaria, towards which an increasing number of
countries are moving, and some have already achieved:
elimination [3, 4]. However, the profile of malaria ende-
micity in low-transmission settings has shifted from the
typical distribution along vector suitability gradients to
the emergence of hotspots and ‘hotpops’—populations
that sustain malaria transmission due to socio-demo-
graphic risk factors [10]—where the disease persists [9—
12]. These hotspots often coexist with areas of moderate
to high malaria transmission, resulting in a heteroge-
neous malaria epidemiological profile that challenges the
achievement of national elimination goals [13, 14].

This change in the malaria epidemiological profile and
the intervention strategies, which now aim at malaria
elimination [4], requires an update of the current tech-
nologies and tools used to map malaria risk. Achieving
malaria elimination requires targeting malaria in the
remaining hotspots and ‘hotpops’ and therefore incorpo-
rating (and identifying) the factors that sustain the dis-
ease in low-transmission settings, rather than focusing
only on the traditional climatic and environmental fac-
tors that have historically explained disease distribution
in space. Instead, the conceptual framework of [15] shows
that malaria risk is the result of interactions between
two key components: the hazard and the vulnerability
of societies (see Fig. 1). Hazard refers to the potential

occurrence of infected vectors and therefore includes all
environmental factors that influence their presence and
vectorial capacity [15]. These factors, which are typically
used to map malaria risk and can be easily obtained from
remote sensing, mainly relate to the climatic and land
use/land cover conditions that make the environment
suitable for vector breeding sites, such as temperature,
rainfall, relative humidity, vegetation cover, proximity to
water bodies and altitude [16—-19].

Yet, the population at risk is not only those who live in
an environment favourable to vector-borne diseases, but
also those who are most vulnerable to them. Vulnerabil-
ity is defined as the predisposition of a population to the
burden of malaria due to differences in exposure, sus-
ceptibility and/or resilience [15, 21, 22]. Exposure is the
likelihood or frequency of contact with an infected vector
[23], which may be increased at certain times (e.g. dur-
ing the rainy season) or for certain livelihoods (e.g. pas-
toralists) [20, 24]. Susceptibility represents the propensity
of individuals to be adversely affected by malaria due to
biological or socio-economic factors. For example, we
know that immunity, co-infections or malnutrition influ-
ence the likelihood of clinical manifestations of malaria
(i.e. biological susceptibility) [15, 21], while poverty also
increases people’s predisposition to malaria (i.e. socio-
economic susceptibility) [15]. Finally, resilience refers
to the capacity of populations to anticipate malaria by
using malaria prevention tools, to cope with malaria by
having easy access to health facilities, and to recover
from malaria by having access to treatment [15, 20]. The
importance of considering both hazard and vulnerabil-
ity is even greater in the context of global changes such
as urbanisation, climate change and demographic shifts.
These changes will alter malaria hazard and vulnerability,
thereby affecting the transmission and distribution of the
disease [3].

Despite this conceptual understanding, malaria risk
maps often focus on the hazard relating to the environ-
ment’s suitability for vectors and rarely consider the
vulnerability of society to malaria. In a recent review of
malaria risk mapping [25], 88% (1n=78) of studies that
used covariates included hazard factors, while only 40%
(n=36) included vulnerability factors (calculations based
on [25]). Of those that included vulnerability, most either
assessed associations between vulnerability factors and
malaria risk without incorporating them into predic-
tive mapping [9, 13, 26-38], assumed spatially uniform
vulnerability [39, 40], or produced risk maps at coarse
spatial resolutions (e.g. health district) [41-48]. Only a
small number of studies included vulnerability factors in
fine-scale (1-5 km) risk mapping [1, 49-53]. Similarly,
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Fig. 1 The hazard-vulnerability framework of malaria risk. Adapted from [15] and [20]. This framework is based on a three-level structure. Hazard and
vulnerability are the two components of malaria risk, each of which is composed of specific dimensions (e.g. climate & weather, exposure), which are quan-

tified using measurable factors (e.g. temperature, wealth index)

in another review [54], 85% (1 =100) of studies that used
variables beyond epidemiological ones to model or map
malaria risk relied on hazard factors, while only 43%
(n=50) considered malaria vulnerability (calculations
based on [54]). Across these studies, the most commonly
used vulnerability factors were population density and
accessibility to cities (see Table S1, Supplementary Mate-
rial 1), as noted in multiple reviews [16, 25, 54]. Previ-
ous research has shown that vulnerability factors can be
combined into an index to produce malaria vulnerability

maps [15]. These indices were then combined with the
entomological inoculation rate through weighted aggre-
gation approaches (e.g. weighted criteria analysis) to gen-
erate potential malaria risk maps at a resolution of 10 km
[21]. In this study, we build on their work by defining
additional indicators of malaria hazard and vulnerability
(e.g. prevalence of anaemia, ethnicity) and using them to
map malaria risk through malaria prevalence at a spatial
resolution of 1 km.
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In this elimination context, identifying disease hotspots
in predictive maps requires high-resolution spatial data
on malaria outcomes and their determinants. Two of the
most commonly used sources of malaria data are routine
malaria case data from health management information
systems (e.g. DHIS2), which can be used to calculate
malaria incidence, and household surveys, such as the
Demographic and Health Surveys (DHS), which provide
estimates of malaria prevalence [55]. Routine malaria
data are more spatially and temporally dense because
they are collected continuously through the health sys-
tem [55, 56]. However, they miss individuals who do not
seek care, and the actual location of infection is often
unknown as cases are recorded at health facilities [55,
56]. Defining their catchment areas is challenging, even
when the locations of health facilities are known [55, 56].
Although household surveys are designed to provide sub-
national-level estimates [57], they can still offer insights
into the malaria burden at the community level, regard-
less of treatment-seeking behaviour [58]. Despite the
spatial displacement of cluster coordinates, survey clus-
ter locations can be used to approximate the locations of
local infections. For these reasons, we used malaria prev-
alence estimates from household surveys to represent
malaria risk in this study.

Regarding malaria determinants, previous studies of
malaria risk mapping have widely used environmental
variables based on freely available MODIS and Landsat
satellite imagery [16, 59, 60], although these are available
at low spatial resolution, or are expected to be retired in
a few years (e.g. Terra satellite) [16, 59]. With advances in
remote sensing and GIS technology, very high-resolution
satellite imagery such as SPOT, Pléiades or QuickBird
have also been used to map malaria risk at fine spatial
resolution [16, 59, 61], but these are not freely available.
At the same time, the Sentinel satellites of the Copernicus
Programme now provide high resolution (10 m) optical
imagery and appear to be a good compromise between
acquisition cost and spatial resolution. In addition, large-
scale products based on Sentinel imagery, such as the
Global Human Settlement Layer [62] and the Dynamic
World land cover dataset [63], have become increas-
ingly available in recent years. Several review studies
have highlighted the missed opportunities of using Sen-
tinel satellite imagery for malaria risk mapping and have
encouraged the exploration of the potential of Sentinel-
derived products for this purpose [16, 64].

Among malaria-endemic countries, Senegal has seen
a significant reduction in malaria cases and deaths over
the past decades, thanks to the introduction of ACTs in
2006 and rapid diagnostic tests (RDTs) in 2007, and mass
ITN distribution campaigns. In recent years, interven-
tions have diversified to include seasonal malaria chemo-
prevention (SMC), routine ITN distribution, and active
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case detection and investigation [9, 65]. Furthermore,
Senegal is one of the 35 countries aiming to eliminate
malaria by 2030 under the Global Technical Strategy for
Malaria 2016-2030 [66]. However, since 2020, malaria
cases and deaths have stagnated, particularly in the high-
risk southern regions of Senegal. In 2022, the number of
reported cases was more than 358,000, with 273 deaths
[65]. 95% of these cases were registered in the moder-
ate- to high-transmission zones in western (i.e. Dakar,
Diourbel, Kaolack) and south-eastern Senegal (i.e. Kolda,
Kédougou, Tambacounda) [65]. The other parts of Sen-
egal has low to very low transmission, particularly in the
north, with some areas classified as pre-elimination zones
[65]. Previous studies have mapped malaria prevalence
in Senegal for the years 2008 and 2010 [67, 68], while
other research has mapped both incidence and preva-
lence under the assumption of temporal stationarity over
extended periods (e.g. from 1990 or between 2008 and
2017) [69, 70]. While the National Malaria Control Pro-
gramme has produced recent maps of malaria incidence
using DHIS2 [65], the most recent MIS (2020-21) had not
yet been used to model and map malaria prevalence in
Senegal at the time of analysis. More detailed malaria risk
maps and a better understanding of the driving factors
would allow better targeting of malaria control interven-
tions and help the country move closer to elimination.

The aim of this paper is to map malaria risk by combin-
ing different disease risk factors, covering both malaria
hazard and vulnerability, to provide an integrated malaria
risk mapping approach, using the elimination context of
Senegal as a case study. We used data from the two most
recent household surveys in Senegal which included
malaria epidemiological data—the 2017 DHS and the
2020-21 MIS. Using Bayesian geostatistical models, we
assessed the relationship between malaria risk factors
and malaria prevalence to understand which factors sus-
tain the disease in Senegal. We produced malaria risk
maps at 1 km spatial resolution and aggregated predic-
tions by health district after adjusting for child popula-
tion counts, as policy decisions are often made at this
level [17]. Furthermore, interactive web-based versions
of the 1 km predictive maps were also produced to allow
easy identification of hotspots for targeted malaria con-
trol. By using open-source high-resolution covariates
and providing the codes that support these analyses (see
[71]), the framework and methods of this study can be
applied beyond Senegal.

Methods
Study area
Senegal is a West African country bordered by Maurita-
nia, Mali, Guinea, Guinea-Bissau, Gambia and the Atlan-
tic Ocean. Senegal is characterised by an alternation of
dry and rainy seasons, with the rainy season generally
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lasting from June to October [65]. Average annual rain-
fall, and therefore vegetation types, vary across the coun-
try from north to south, defining four ecological zones: (i)
the Sahelian zone, with semi-arid grasslands and acacia
savannas; (ii) the Sahelo-Sudanian zone, with flat wooded
savannas; (iii) the Sudanian zone, with coexisting grass-
lands and woodlands; and (iv) the Sudano-Guinean zone,
with dense forests and annual rainfall of over 800 mm
[68]. These north-south differences in rainfall patterns
also translate into differences in malaria transmission
across regions (see Fig. 2). Two regional groupings, cov-
ering 52% of the population, bear almost the entire bur-
den of malaria in the country [65]: Dakar, Diourbel and
Kaloack in the west, and Kolda, Kédougou and Tam-
bacounda in the south (see Fig. 2), also known as the
KKT area. In 2022, these six regions accounted for 95%
of malaria cases (30% in the first group and 65% in the
second), 90% of severe cases, 84% of all malaria-related
deaths, all ages combined, and 96% of deaths in children
under 5 [65]. Malaria transmission remains high to mod-
erate in these six regions, while the other eight (out of
a total of 14) have low to very low transmission [65]. A
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new epidemiological profile is emerging in the northern
regions, with hotspots of residual transmission [9, 65, 72,
73]. The main malaria parasite species is P. falciparum,
transmitted by the main Anopheles (An.) vector species:
An. gambiae sensu stricto, An. arabiensis, An. funestus
and An. melas [67]. Senegal has national parks, which are
areas of lower population densities, the largest being the
Niokolo-Koba National Park in the KKT area (see Fig. 2).

Malaria outcome

As malaria data source, we used the two most recent
household surveys conducted in Senegal that collected
malaria epidemiological data: the 2017 continuous DHS
and the 2020-21 MIS. The 2017 DHS was largely con-
ducted during the rainy season (conducted between
April and December), while the 2020-21 MIS was con-
ducted during the dry season (conducted in Decem-
ber and January). The sampling frame of the 2017 DHS
was designed to be representative at the regional level
for Senegal, whereas the 2020-21 MIS collected data
representative at the level of four geographical zones
within Senegal (West, Centre, North and South) and at
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Fig. 2 Map of Senegal’s 14 regions
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the health district level for the southern regions, which
are the areas of high malaria transmission (i.e. the KKT
area; Kolda, Kédougou and Tambacounda). As a result,
the sampling frame for the 2017 DHS was stratified by
region and by rural/urban areas, while for the 2020-21
MIS it was stratified by geographical zone/health district
and by rural/urban areas. In both surveys, primary sam-
pling units (PSUs) or clusters were defined within each
stratum using the enumeration areas of the 2013 census.
A two-stage sampling procedure was used, first selecting
PSUs with a probability proportional to their population
size in terms of resident households, and then randomly
selecting a set of 20—25 households within each PSU for
a questionnaire interview [74, 75]. This resulted in 400
clusters and 8,800 households for the 2017 DHS and 207
clusters and 5,175 households for the 2020-21 MIS. In
the 2020-21 MIS, only the 124 clusters in the KKT area
were tested for malaria.

In the 2017 DHS, all children aged 6—59 months were
tested for malaria positivity using both microscopy and
RDTs, whereas in the 2020-21 MIS, malaria was only
tested using RDTs. Here, we used RDT results as recom-
mended by WHO and the Roll Back Malaria Monitor-
ing and Evaluation Reference Group in settings where
high-quality microscopy is not available, such as non-
endemic settings [76, 77]. The malaria outcome used
to assess malaria risk was therefore the prevalence of
malaria in children aged 6—59 months, aggregated at the
cluster level, i.e. the percentage of children tested who
have parasite antigens detected by RDTs. RDTs detect
malaria parasite antigens that can persist for several
weeks after treatment [77], which is convenient in this
case as the 2020-21 MIS was conducted a few months
after the high-transmission season. Malaria prevalence
data are geolocated using the geographic coordinates of

b)
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cluster centroids, but these are randomly displaced by up
to 2 km in urban areas and 5 km in rural areas (with an
additional 1% offset up to 10 km) to protect the privacy
of survey participants [75, 78]. This spatial displacement
has been shown to strongly affect the accuracy of predic-
tions at the intra-urban scale [79-81]. We take this into
account when extracting covariates. Figure 3 shows the
malaria prevalence indicator aggregated per cluster for
the two surveys.

Hazard and vulnerability factors

We collected a set of environmental and socio-demo-
graphic variables covering the different dimensions of
malaria hazard and vulnerability, as described in Fig. 1.
First, we selected gridded covariates that were available
from public repositories, with the date of collection as
close as possible to that of the surveys (i.e. 2017 for DHS
and 2020 for MIS). With the aim of improving the accu-
racy of predictive maps, as recommended in [80, 82], we
attempted to maximise the level of detail in the selection
of gridded covariates, so that they all have a spatial reso-
lution of less than or equal to 1 km. In addition to these
gridded covariates, several factors relating to malaria vul-
nerability were calculated using data from the Senegal
2017 DHS and 2020-21 MIS and aggregated at the cluster
level, following instructions from the survey reports [83,
84] and more general guidance from the DHS Program
[74]. We used Bayesian geostatistical models to gener-
ate continuous gridded surfaces of these DHS indicators,
as described later. In the following sections, we describe
the covariates used in this study, classified according
to the hazard-vulnerability framework. They are listed
with their characteristics and sources in Table 1 and are
described in detail (e.g. spatial resolution, reference year)
in Supplementary Material 2.

Malaria prevalence
0 to 0.001
0.001to 4

* 41t06.7

* 6.7t013.3

* 13.3t031.6

* 31.6t048.3
Missing

— Regions

Water

Fig. 3 Malaria prevalence in children under five per cluster of the 2017 DHS (a) and 2020-21 MIS (b). Malaria positivity was tested by rapid diagnostic

tests (RDTs)
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Table 1 Classification of geospatial covariates by hazard and vulnerability dimensions and their data source

Component Dimension Covariates Data source
Hazard Climate & Precipitation, temperature at 2 m, potential evapotranspiration, near- CHELSA [85]
weather surface relative humidity
Day land surface temperature (LST), night LST, daily LST range MODIS [86, 87]
Vector-habitat Normalized difference vegetation, water and moisture indices (NDVI, Computed from Sentinel-2 L1C compos-
NDWI, NDMI) ites of the Joint Research Centre (JRC) [88]
Distance to water, trees, flooded vegetation, crops, grass, bare Dynamic World by Google and the World
ground, shrubland Resources Institute [63]
Distance to human settlements World Settlement Footprint from the Ger-
man Aerospace Center [89]
Residential built-up surface, building height Global Human Settlement Layer from the
JRC[90, 91]
Average nighttime lights Annual VIIRS nighttime lights v2.1 from
the Earth Observation Group [92]
Elevation US Geological Survey [93]
Vulnerability Exposure Population counts WorldPop project [94]

Susceptibility

Density of goat, cattle, pig, poultry, sheep

Under-five children, pregnancies
Proportion of Wolof, Fula, Serer, Diola, Mandingue, Soninke, not
Senegalese and other ethnic groups

Wealth index, access to basic sanitation service, malaria-related
anaemia in children, stunting in children

Gridded Livestock of the World v2.01 by
FAO in collaboration with ILRI, the Univer-
sity of Oxford and the Université Libre de
Bruxelles [95]

WorldPop project [96, 97]

ETH Zurich [98]

The DHS Program

Resilience Distance to major roads

OpenStreetMap [99]

Travel time to major cities, walking-only and motorized travel time to  Malaria Atlas Project [100, 101]

health facilities

Indoor residual spraying, ITN access, ITN ownership, ITN owner-

The DHS Program

ship for 2, literacy rate in women, use of intermittent preventive

treatment

Hazard and vulnerability dimensions are based on the conceptual framework in Fig. 1 and adapted from [15, 20]

Hazard
Climate & weather: The presence of infected vectors is
highly dependent on climate and weather, with Anoph-
eles mosquitoes thriving at temperatures between 18 and
32 °C [102] and relative humidity of at least 60% [103].
Higher relative humidity increases the life span of the
vector, giving the mosquito more time to acquire and
transmit the parasite [103]. In addition, high relative
humidity and potential evapotranspiration usually mean
high availability of surface water and soil moisture, pro-
viding suitable conditions for breeding sites [16]. Rain-
fall influences the presence of temporary and permanent
water bodies and can also create small pools of water
in which An. gambiae sensu lato prolifically breed [102,
104], although heavy rainfall can increase larval mortal-
ity through flushing and flooding [105]. We accounted for
these risk factors using climate variables from CHELSA
[85] and land surface temperatures (LST) from MODIS
[86, 87], as LST have been widely used in previous work
[16, 68].

Vector-habitat: Land use and land cover also strongly
influence the presence of vectors, with water bodies,
wetlands and dense vegetated areas typically providing

suitable conditions for vector breeding sites [16, 106].
Conversely, other land use categories are less favourable
for vector habitat, such as bare ground (no vegetation)
and built-up areas [106, 107], as vectors tend to thrive
in rural rather than urban areas [106, 108]. Altitude also
plays a role in shaping vector habitats, with lower eleva-
tions often indicating wetter areas and temperatures
more conducive to vector development [109, 110]. To
account for the suitability of the environment for vector
habitat, we extracted vegetation and water indices from
Sentinel-2 satellite imagery and land use/cover variables
from the Dynamic World land cover dataset [63], the
World Settlement Footprint [89] and the Global Human
Settlement Layer [90, 91]. We also used nighttime lights
[92] to indicate the presence of urban centres, and eleva-
tion was extracted from SRTM elevation data [93].

Vulnerability

Exposure: Some factors may increase the likelihood of
contact with infected vectors, such as certain livelihoods.
Livestock husbandry practices may increase exposure to
infected vectors for pastoralists who take their herds to
graze in areas that may be more suitable for the vectors.
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However, some animals, such as cattle, have a protec-
tive effect against malaria because vectors prefer to feed
on them rather than on humans [24, 111], while it is the
opposite for other types of livestock (e.g. chickens) [111].
To account for these factors, we used gridded livestock
data from the Gridded Livestock of the World project
[95]. Population counts from WorldPop [94] were also
included in the analysis to account for the location of
potentially exposed populations.

Susceptibility: Young children and pregnant women
are biologically more susceptible to clinical manifesta-
tions of malaria due to weaker immunity [24]. Genetic
background can also influence susceptibility to malaria,
and some ethnic groups may be genetically advantaged
against malaria [24]. Co-infection with other parasitic
water-borne diseases (e.g. schistosomiasis [112]) may
increase the risk of malaria infection by several mecha-
nisms, including lowering the immunological response
and facilitating sporozoite infection [112]. There is
increasing evidence that malnutrition also increases sus-
ceptibility to malaria [113, 114], although the relation-
ship between malaria and malnutrition is sometimes
unclear [24, 113]. Anaemia is both a risk factor and a
consequence of malaria, as low levels of haemoglobin can
weaken the immune system [115], increasing susceptibil-
ity to malaria, and malaria parasites cause destruction
of red blood cells [24, 116]. Finally, socio-economic fac-
tors also influence malaria risk, as poverty is known to
increase malaria susceptibility in several ways, includ-
ing reducing access to preventive tools and influencing
health-seeking behaviour [24, 117]. Several datasets were
used to account for malaria susceptibility: data on chil-
dren and pregnancies were extracted from WorldPop [96,
97], while ethnicity maps were obtained from the SIDE
project [98]. All other susceptibility factors were derived
from the DHS and MIS data: access to basic sanita-
tion (which influences co-infection with schistosomiasis
[112]), stunting in children (only available for the 2017
DHS), anaemia prevalence and a wealth index.

Resilience: Ownership and use of preventive tools such
as ITNs and indoor residual spraying (IRS) have been
shown to reduce malaria infections [115]. However, use
of these tools may depend on beliefs, perceptions and
knowledge, with women’s education playing an impor-
tant role in preventing malaria disease in themselves
and their children [24, 115]. In addition, access to health
care is a major barrier to early diagnosis and treatment of
malaria [117], with people in remote and isolated areas at
greater risk of severe malaria disease due to delays or lack
of treatment [115, 117]. Malaria prevention indicators
(i.e. ITN ownership, intermittent preventive treatment
and IRS use, literacy in women) were calculated from
the DHS and MIS data, while accessibility variables were
extracted from travel time maps from the Malaria Atlas
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Project [100, 101] and OpenStreetMap. Note that we did
not use DHS indicators on the use of malaria prevention
and treatment (e.g. ITN use, ACT use), following recom-
mendations from the DHS Program [118]. These indica-
tors are based on short recall periods, such as sleeping
under an ITN the night before the survey, or treatment
received in the past two weeks. Since the timing of data
collection varies across locations, such short recall peri-
ods are not consistent across space, potentially introduc-
ing temporal bias into spatial analyses [118].

Processing of gridded covariates

Processing of gridded covariates included the follow-
ing steps: (i) all covariates were resampled to the same
1x1 km grid to overcome differences in spatial reso-
lution, formats, projections and spatial extents (using
resample and project functions from terra R package),
(ii) continuous covariates were converted to z-scores as
done in [12, 119] to overcome comparability issues due
to different units of measure, and (iii) covariate extrac-
tion (using exact_extract from exactextractr R package)
was performed using 5 km and 2 km buffers around the
geographic coordinates of rural and urban survey cluster
centroids, as recommended by the DHS Program [120].
Continuous covariates were extracted using the average
covariate values in the buffers, while for categorical land
cover covariates, we used the average minimum distance
to each class per buffer [119, 121].

Bayesian geostatistical modelling
Model structure
In this paper, we used a Bayesian geostatistical model-
ling framework to model and predict the risk of malaria
in children under five years of age. By treating model
parameters (e.g. regression coefficients) as random vari-
ables with their own statistical properties (e.g. mean,
variance), Bayesian geostatistics allow estimation of the
posterior predictive distributions of the response vari-
able, and hence makes the quantification of the uncer-
tainty in Bayesian predictions very straightforward
[122]. This ability to measure uncertainty has made
them increasingly popular in recent years for modelling
various health outcomes, including malaria risk [60, 68,
123-125].

Consider Y; as the number of under-five children with
a positive malaria RDT result out of Nj;, the total number
of children tested at cluster site s; (i =1,... ,n). Given
the true prevalence of malaria p;, Y; follows a binomial
distribution such that:

Yi|pi ~ Binomial (N;, p;) (1)

However, for the 2017 DHS, malaria positivity was
tested in all regions (whereas for the 2020-21 MIS, only
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south-eastern regions were tested), including northern
regions with very low malaria transmission, resulting in
many zero prevalence values. Therefore, for data from
the 2017 DHS, we modelled Y; using a zero-inflated
binomial (ZIB) distribution, which allows zeros to be
either structural zeros, where no risk of malaria has been
observed, or sampling zeros, where malaria disease may
be too rare an event to be detected in the sample tested:

Y, ~ ZIB(N;, pi,0;) (2)

with probability 6; 3)

Yilp:. 6 0
il pi, bi ~ Binomial (N;, p;) with probability 1 — 6;

0;, the probability of a sampling zero, is modelled as a
function of the linear predictor 7; and a zero-probability
hyperparameter «:
6, =1 (—Slm)_ @)
1+ exp (n;)

In Egs. 1 and 2, the true prevalence p; is linked to the lin-
ear predictor 7); through a logit link function:

i = logit (pi) = Bo + X" B +us (5)
w ~ GP(0, ¥) ©)

where [y is the intercept, X; is the vector of spatial
covariates at site s;, [ is a vector of the corresponding
unknown regression coefficients and wu; is a vector of
spatially structured random effects modelled as a zero-
mean Gaussian Process (GP) [126]. Spatial dependence
between two observations of the GP at locations s; and
59 is modelled using the Matérn covariance function X,
defined as follows:
2171/ 0.2

F (l/ )u ("{ h) KU ("{ h) (7)

Cov (s1,82) =

where £ is the Euclidean distance between s; and sg, 02

is the marginal variance, ¥ > 0 controls the smoothness
of the spatial process, K, is the modified Bessel func-
tion of the second kind and s > 0 is a scale parameter
controlling the range, i.e. the distance from which spatial
autocorrelation is negligible. The range r is given as a
function of x such that r = V8v /k .

Model implementation

Bayesian models were implemented within the Integrated
Nested Laplace Approximation (INLA) modelling frame-
work in conjunction with the Stochastic Partial Differen-
tial Equation (SPDE) approach [127], using the R-INLA
package. The INLA-SPDE approach offers significant
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improvements in computational complexity compared
to the classical Markov chain Monte Carlo (MCMC)
approaches [126]. Four different models were fitted based
on different combinations of covariates (classified as in
Fig. 1; Table 1): (i) the first model included no covariates
(i.e. intercept-only model), (ii) the second model included
all covariates related to hazard (i.e. climate & weather and
vector-habitat), (iii) the third model included all covari-
ates related to vulnerability of society (i.e. susceptibility,
resilience and exposure), and (iv) the last model included
all covariates, i.e. related to both hazard and vulnerability.
For each model, forward stepwise variable selection was
implemented directly within R-INLA using the INLAstep
function (INLAutils R package), so that covariates are
sequentially added to the model until adding a covariate
no longer significantly reduces the Deviance Information
Criterion (DIC). Further details on Bayesian geostatisti-
cal methods are provided in Supplementary Material 3.

The DIC was further used to identify the model that
best fits the data among the four models tested (Inter-
cept-only, Hazard, Vulnerability, Hazard + Vulnerability),
as commonly done in the field [128]. In addition, the
geostatistical models were validated using a 5-repeated
5-fold cross-validation procedure, with folds stratified to
ensure that each fold contained both zero and non-zero
prevalence values. The following performance metrics
were calculated on the posterior mean estimates of the
test sets: the mean absolute error (MAE), the root mean
square error (RMSE), the coefficient of determination
(R?) and the squared correlation between predicted and
observed values (r?).

Predictive maps

The best-fit models for 2017 (DHS) and 2020-21 (MIS)
were used to predict malaria prevalence in children
under five years of age on a 1x 1 km resolution grid. To
support better visualisation of the predictive maps, we
produced interactive web-based versions (using leaflet
R package) to permit easy identification of specific high-
risk communities and their names for targeted control
and preventive efforts. As in previous work [61, 68], the
number of infected children under five was also esti-
mated by multiplying the predicted malaria prevalence
by the high-resolution counts of children under five from
WorldPop [96] (after resampling to the same spatial reso-
lution). This represents the predicted number of children
under five who would test positive for malaria if testing
were conducted across the entire population of children
in that age group. Population-adjusted prevalence esti-
mates were calculated at the health district level by sum-
ming the total number of infected children under five in
each health district and dividing this sum by the total
number of children under five in the same health district
(as estimated from the WorldPop counts).
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Prior to predicting malaria prevalence, we generated
predictive maps (at 1 km resolution) of the DHS indica-
tors selected as covariates in the best-fit models using
Bayesian geostatistical models. Following recommen-
dations from [129], these models used a similar model
structure as in Eq. 5, but (1) included only an intercept
term and SPDE random effects (i.e. without geospatial
covariates to avoid circularity issues) and (2) used a bino-
mial likelihood for indicators representing proportions
and a Gaussian likelihood for the wealth index.

Results

This study used data on 18,847 and 337 children aged
6—59 months (i.e. 0-5 years) in the 2017 DHS and 2020-
21 MIS, respectively. In 2017, the observed national
malaria prevalence was estimated at 0.9%, compared to
5.1% in the KKT area. In 2020-21, the observed preva-
lence in the KKT area was 5.3% (malaria testing only
conducted in the KKT area in 2020-21). In the 2017 DHS
data, 87% of clusters have zero malaria prevalence. This
further demonstrates that there are different levels of
endemicity across the country, with overall low malaria
prevalence at the national level and the presence of
higher risk areas in the south-east.

Table 2 Comparison of bayesian geostatistical models in terms
of selected covariates and DIC

National models Covariates DIC
(2017 DHS)
Intercept-only / 35876
Hazard Potential evapotranspiration, tem- 339.90
perature at 2 m, elevation
Vulnerability Malaria-related anaemia in children,  306.62
ITN ownership for 2, travel time to
health facilities (walk), pregnancies
Hazard +Vulnerability Malaria-related anaemia in children,  296.08
ITN ownership for 2, distance to shru-
bland, travel time to health facilities
(walk), NDMI, proportion of Fula
KKT models (2020-21  Covariates DIC
MIS)
Intercept-only / 317.28
Hazard Day LST, distance to grass, distance 305.85
to trees
Vulnerability Wealth index, proportion of not 310.66
Senegalese
Hazard +Vulnerability Day LST, distance to grass, distance  302.30

to trees, wealth index

Models with the lowest Deviance Information Criterion (DIC) are underlined
to indicate the best-fit models. Note that the DICs of the national and KKT
models should not be compared directly, as the models were fitted to different
datasets. The covariates are listed in the order in which they were selected by
stepwise selection. ITN stands for insecticide-treated net, NDMI for normalized
difference moisture index and LST for land surface temperature
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Model selection

Model fit

The DIC [130] was used to compare different models of
malaria prevalence, with the best-fit models minimising
the DIC. The DIC values of the different models imple-
mented using 2017 DHS (national level) and 2020-21 MIS
(KKT area) data are shown in Table 2. For each model, a
forward stepwise variable selection was implemented, so
that covariates are sequentially added to the model until
the addition of a covariate no longer significantly reduces
the DIC.

At the national level (i.e. using 2017 DHS data), the
best-fit model is obtained using both hazard and vul-
nerability covariates (see Table 2). The set of covari-
ates selected by forward stepwise selection includes the
following vulnerability covariates: the prevalence of
malaria-related anaemia in children, the proportion of
households with at least one ITN per two people, the
walking time to health facilities and the proportion of
Fula. The following hazard covariates were also selected:
the distance to shrubland and the NDMI. Using only vul-
nerability covariates improved the model fit compared to
using only hazard covariates, as indicated by the differ-
ence in DIC in Table 2. Similar to the national-level mod-
els, the best-fit model fitted to the 2020-21 MIS data (i.e.
for the KKT area) is the one that combines both hazard
and vulnerability, with the following covariates selected:
day LST, distance to grass, distance to trees and wealth
index (Table 2). However, in contrast to the models fit-
ted to the 2017 DHS data, the Hazard model showed
an improved fit compared to the Vulnerability model.
Finally, whether for 2017 or 2020-21, all models that
included hazard and/or vulnerability covariates improved
model fit compared to the intercept-only models using
only spatial random effects and an intercept term.

Cross-validation performance

We performed a 5-repeated 5-fold cross-validation exer-
cise to test the predictive performance of the different
models in Table 2. We used the following metrics cal-
culated on the test sets: MAE, RMSE, R? (coefficient of
determination) and r? (squared correlation between pre-
dicted and observed values). RMSE and MAE measure
the average prediction error and are strictly positive, with
smaller values indicating a better model performance. R*
ranges from minus infinity to 1, with higher values indi-
cating that the model explains more of the variance in
the dependent variable [131]. r* ranges from 0 to 1 and
reflects the strength of the linear relationship between
the observed and predicted values (i.e. values closer to 1
indicate a stronger correlation). Estimates of these per-
formance metrics over the cross-validated folds are given
in Table 3; Fig. 4.
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Table 3 Median performance metrics (MAE, RMSE, R? and 1)
obtained by cross-validation
National models (2017 MAE RMSE R*(COD) r*(cor-

DHS) (%) (%) relation)
Intercept-only 1.91 448 0.12 0.31
Hazard 1.75 4.75 -0.09 0.30
Vulnerability 1.13 3.15 048 0.60
Hazard +Vulnerability 1.08 2.86 0.64 071

KKT models (2020-21 MAE RMSE R?(COD) r*(cor-
Mis) (%) (%) relation)
Intercept-only 4.82 6.33 0.09 0.13
Hazard 435 631 0.13 0.20
Vulnerability 4.63 6.68 0.10 0.17
Hazard +Vulnerability 4.52 6.35 0.05 0.20

Models that minimise the RMSE and MAE and maximise the R? and r* are
underlined, indicating the best model performance. The MAE, RMSE, R? and r*
values were calculated on the test sets after implementing a 5-repeated 5-fold
cross-validation procedure. The R? is the coefficient of determination (COD)
and the r’ is the square of the correlation between the observed and predicted
values

At the national level (2017), the cross-validation results
are consistent with the previous model DIC comparison
(see Table 2). The Hazard + Vulnerability model is the
best performing model with a median RMSE of 2.86, a
median R® of 0.64 and a median r* (squared correlation)
of 0.71 (Table 3). Furthermore, Fig. 4 shows that it is the
model with the least variability in metric values across
the cross-validation folds for all metrics except r*. Simi-
lar to the DIC comparison (see Table 2), the Vulnerability
model also outperformed the Hazard model with median
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R? of 0.48 and - 0.09 and median squared correlation (r?)
of 0.60 and 0.30 respectively. Besides, the variability in
RMSE, MAE and R® values across the cross-validation
folds is lower for the Vulnerability model compared to
the Hazard model (Fig. 4). The Intercept-only model also
improved performance over the Hazard model in terms
of RMSE, R? and r* (Table 3).

While there is a clear improvement in performance
by using vulnerability covariates at the national level
(see Fig. 4), the different models fitted to the KKT area
(2020-21) do not show much difference in performance
(see Fig. 4). The models performed poorly, with at best
a median RMSE of 6.31, R? of 0.13 and r* of 0.20 for the
Hazard model, which limits the interpretability of the
estimates and results. It is also worth noting that adding
covariates to the model here, whether Hazard or Vulner-
ability, did not improve performance as much as it did
for the national-level models (see Table 3). Only the best
models based on model fit and cross-validation results
were retained for further analysis in this paper: i.e. the
Hazard + Vulnerability model for the national level and
the Hazard model for the KKT area.

Posterior estimates

Table 4 reports the posterior estimates of the parameters
of the Hazard + Vulnerability model at the national level
and the Hazard model in the KKT area. Since all covari-
ates are on the same scale, as they have been transformed
into z-scores, the estimated coefficients can be compared

a) MAE (%)

b) RMSE (%)

e

i $*¢+ ’

=x

Qo 0 0 Model
@ : = Interc?ft-only
S c) Rz (COD) d) r? (correlation) B Hazard
» 1.0 1.00 EIVuInerab|I{t)/
L B Hazard + Vulnerability
05 =
$ 0.75
0.0 $+¢
05 0.50
-1.0 0.25 $ Q*é
15 , : 0.00 : :
National models KKT models National models KKT models
(2017) (2020-21) (2017) (2020-21)

Fig. 4 Boxplot of performance metrics obtained by cross-validation. The MAE, RMSE, R* and r* values were calculated on the test sets after implementing
a 5-repeated 5-fold cross-validation procedure. The R? is the coefficient of determination (COD) and the r* is the square of the correlation between the
observed and predicted values. Note that outliers are not shown for the sake of readability
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Table 4 Posterior estimates of bayesian geostatistical models
fitted to 2017 DHS and 2020-21 MIS data

National model parameters (2017 Mean 2.5% 97.5%
DHS) quantile quantile
Intercept ( Bo) -5.727 -6810 - 4.807
Malaria-related anaemia in children ~ 0.535  0.387 0.687
[TN ownership for 2 -0570 -0.838 -0310
Distance to shrubland 0688 0257 1.144
Travel time to health facilities (walk) ~ 0.652 0.193 1.138
NDMI -0863 -1518 -0.210
Proportion of Fula 0.612 -0.006 1.261
Zero-probability parameter (a ) 0056  0.005 0.189
SD of spatially correlated variations ~ 1.882 1.222 2.783

( O'u)

Range (r) (degree) 4314° 2205 7611
KKT model parameters (2020-21 Mean 2.5% 97.5%
MIS) quantile quantile
Intercept ( Bo) -4428 -5652 -3.267
Day LST -0720 -1267 -0.181
Distance to grass 1374 0.581 2215
Distance to trees -3.029 -5538 -0.601
SD of spatially correlated variations ~ 1.099  0.839 1435

( Uu)

Range (r) (degree) 0349° 0.124 0.803

Posterior estimates are based on the Bayesian geostatistical models that
maximised model fit and performance during model selection, i.e. the
Hazard + Vulnerability model at the national level (2017) and the Hazard model
for the KKT area (2020-21). Posterior estimates are reported as mean and 95%
credible interval (Cl). Underlined covariates indicate significant relationships,
i.e. when both the 2.5th and 97.5th percentiles of the Cl are either greater or
less than zero. Note when interpreting posterior estimates that covariates were
introduced into the models as z-scores. SD stands for standard deviation

2bThese correspond to a range of 479.37 and 38.78 km respectively (1° =
111.12 km). The quantiles are obtained by taking the 95% credible intervals of
the posterior estimates

to assess the relative strength of their effects on malaria
prevalence. For both the national and KKT models,
almost all regression coefficients are significant, as the
95% credible intervals do not include zero (see Table 4),
implying strong associations with malaria prevalence.

At the national level, malaria prevalence in children
aged 0-5 years had a significant positive association with
child anaemia prevalence, walking time to health facili-
ties and distance to shrubland vegetation (Table 4). ITN
ownership had a protective effect against malaria, as it
had a significant negative association with malaria preva-
lence. Malaria prevalence also decreased with increas-
ing NDMI, suggesting that malaria prevalence is higher
in areas with lower water content of vegetation. In the
KKT model, malaria prevalence had a significant nega-
tive relationship with day LST and distance to trees,
and a positive relationship with distance to grass. The
range parameter of the national model indicates that
spatial autocorrelation was present up to 479 km (1°
= 111.12 km), meaning that there was a strong spatial
dependence across the country, whereas this range was
limited to 39 km in the KKT model (Table 4).
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Predictive maps

The selected geostatistical models were used to predict
malaria prevalence on a 1 km resolution grid, i.e. the
Hazard + Vulnerability model at the national level (2017
DHS) and the Hazard model for the KKT area (2020-
21 MIS). As the Hazard + Vulnerability model uses ITN
ownership for every two people and the prevalence of
malaria-related anaemia in children as covariates, this
first requires the creation of interpolated surfaces of
these two DHS indicators with simple Bayesian geosta-
tistical models (with an intercept term and correlated
spatial random effects). These covariate layers are not
presented in detail here, but the results of the cross-val-
idation exercise and the predicted surfaces are presented
in Table S4 and Fig. S1 (see Supplementary Material 4).

Figure 5a and b show the predicted maps of malaria
prevalence at 1 km spatial resolution. At the national
level (Fig. 5a), there is a clear spatial trend with predicted
prevalence averaging below 2% in the north of the coun-
try and western Casamance (i.e. Ziguinchor and Séd-
hiou) and higher prevalence areas in the KKT regions
(i.e. Kolda, Kédougou, Tambacounda). Figure 6 is based
on the same 2017 DHS model but focuses on the regions
with very low to moderate malaria transmission (exclud-
ing Dakar, which is shown in Fig. S2, Supplementary
Material 4), which allows the identification of hotspots
where malaria persists, and which can facilitate elimina-
tion (see Fig. S3, Supplementary Material 4, for a zoom
on the regions individually).

In the KKT area, high-risk areas are located along the
borders with neighbouring countries, particularly Mali
and Guinea, for both 2017 (Fig. 5a) and 2020-21 (Fig. 5b).
In 2017, there is also a large hotspot overlapping with the
Niokolo-Koba National Park (Fig. 5a), although associ-
ated uncertainty estimates are high (Fig. 7). Apart from
the KKT area, the highest risk areas are found in Dakar-
Centre (see Fig. S2, Supplementary Material 4) and in
some spots in Ziguinchor and Sédhiou (Figs. 5a and 6a).
However, the uncertainty maps (Fig. 7) show that these
are the areas with the highest standard deviation in pre-
dicted prevalence, indicating lower confidence in the pre-
dictions in these areas. Urban hotspots can be found in
several cities, including Dakar (Keur Massar, Pikine and
Rufisque) (Fig. S2), Touba, Kaolack, and Thies (Fig. 6a).

By combining the prevalence estimates with the World-
Pop counts of under-five children, it was possible to esti-
mate the number of infected children aged 0-5 years.
These were then summed at health district level (Figs. 5¢
and d and 6¢) and divided by the total child popula-
tion of the district to calculate the population-adjusted
malaria prevalence (AP) per health district (Figs. 5e and
fand 6d). In 2017 (i.e. based on the national-level model),
the health district with the highest AP is Dakar-Centre
(19.8%), followed by Saraya in Kédougou (15.1%), while
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Fig. 5 Predicted malaria prevalence in children under five and number of infected children in Senegal. a, b show the posterior predicted prevalence at
the national level (2017) and in the KKT area (2020-21) on a 1 x 1 km resolution grid, respectively. ¢, d show the number of infected children under five
per health district, obtained by combining the predicted prevalence and child counts. e, f show population-adjusted prevalence aggregated to health
district level. Posterior estimates are based on the Bayesian geostatistical models that maximised model fit and performance during model selection, i.e.
the Hazard +Vulnerability model at the national level and the Hazard model for the KKT area (i.e. Kolda, Kédougou, Tambacounda)

in 2020-21 (i.e. KKT model) it is Saraya (11.0%) (see
Table S5, Supplementary Material 4). Interestingly, sev-
eral health districts in densely populated western Senegal
(e.g. Nioro du Rip, Dakar-North) have a relatively low AP
compared to districts in the KKT area (e.g. Kédougou,
Saraya, Dianké Makha, Kidira), despite having a similar

or larger number of infected children (Table S5, Supple-
mentary Material 4).

Finally, Bayesian geostatistical models can be used to
quantify the uncertainty of malaria prevalence exceed-
ing a threshold value of interest for policymakers. Fig-
ure 8 shows the probability of posterior predicted malaria
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Fig. 6 Predicted malaria prevalence in children under five and number of infected children in regions of very low to moderate transmission in Sen-
egal (excluding Dakar for visibility purposes). a, b show the posterior predicted prevalence and uncertainty estimates as a standard deviation (SD) on
a 1x1 km resolution grid, respectively. ¢ shows the number of infected children under five per health district, obtained by combining the predicted
prevalence and child counts. d shows population-adjusted prevalence aggregated to health district level. Note that posterior estimates are based on the
Hazard +Vulnerability model fitted to the complete 2017 DHS data, as for Figs. 5a, c and e, but only regions with very low to moderate malaria transmis-
sion are shown, to better highlight variation in these areas. A zoom on the Dakar region is provided in Fig. S2 (Supplementary Material 4)

prevalence exceeding 20%, with probabilities close to
0 indicating locations where prevalence is unlikely to
exceed 20%, and probabilities close to 1 indicating the
opposite. The interactive web-based version of Figs. 5a
and b, 7 and 8 can be found in Supplementary Material 5.

Discussion

In this study, we modelled and mapped malaria risk in
Senegal, a country that aims to eliminate malaria by 2030,
introducing several methodological enhancements to
better inform decision-making on elimination interven-
tions. First, by combining different disease risk factors,
we considered both the hazard and vulnerability com-
ponents of malaria risk, avoiding the omission of factors
that sustain the disease. Second, mapping malaria risk
for elimination requires high-resolution data. Typically,

hazard factors rely on either free but low-resolution
imagery (1 km) or expensive high-resolution imagery
(<5 m) [16, 59], which limits replicability to other study
areas and time periods. In this study, hazard factors
were based on alternative free but high-resolution data
(10 m), such as Sentinel satellite imagery and derived
products to improve the accuracy of predicted maps in
malaria hotspots and urban areas. We modelled malaria
prevalence in children aged 0-5 years with Bayesian geo-
statistical models using the two most recent household
surveys that collected malaria epidemiological data in
Senegal: the 2017 DHS, which tested for malaria positiv-
ity in a nationally representative sample, and the 2020-
21 MIS, which focused on the most endemic regions in
southeastern Senegal, the so-called KKT area combining
the regions of Kédougou, Kolda and Tambacounda.
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Fig. 7 Uncertainty in predicted malaria prevalence in children under five in Senegal. a, b Uncertainty is expressed as standard deviation (SD) at the
national level and in the KKT area, ¢, d as 2.5th and e, f as 97.5th percentiles of the predicted posterior distribution of malaria prevalence. Estimates are
mapped on a 1x 1 km resolution grid. Posterior estimates are based on the Bayesian geostatistical models that maximised model fit and performance
during model selection, i.e. the Hazard +Vulnerability model at the national level (2017) and the Hazard model for the KKT area (2020-21) (i.e. Kolda,

Kédougou, Tambacounda)

Vulnerability vs. hazard

For each survey, we compared different Bayesian geo-
statistical models based on different combinations of
hazard and vulnerability factors. We found that the best-
performing model for the 2017 DHS was the model that
combined both hazard and vulnerability factors, with

a median R? of 0.64, while vulnerability alone outper-
formed the Hazard model. However, for the 2020-21
MIS, the models performed poorly, with at best a median
R? of 0.13 for the Hazard model. Overall, for the 2020-21
MIS, adding vulnerability and/or hazard covariates only
slightly improved model cross-validation performance
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Fig. 8 Probability of posterior predicted malaria prevalence in children under five exceeding 20%. Exceedance probabilities are mapped ona 1x 1 km
resolution grid a at the national level (2017) and b in the KKT area (2020-21). Posterior estimates are based on the Bayesian geostatistical models that
maximised model fit and performance during model selection, i.e. the Hazard +Vulnerability model at the national level (2017) and the Hazard model for

the KKT area (2020-21) (i.e. Kolda, Kédougou, Tambacounda)

compared to a model using only spatial autocorrela-
tion in the response through correlated spatial random
effects. It is difficult to determine the origin of the dif-
ferences in the best models fitted to the 2017 DHS and
2020-21 MIS data, as the two surveys differ in terms of
year of data collection, season (i.e. the DHS was con-
ducted mostly during the rainy season and the MIS dur-
ing the dry season) and extent of the study area (i.e. the
DHES is representative at the national level, while the MIS
focused on the KKT area). Furthermore, the model esti-
mates and selected covariates for the KKT area should
be interpreted with caution, given the very low variance
explained in the model (R* of 0.13). However, there are
several possible explanations for the fact that the best
model fitted to the 2020-21 MIS data included only haz-
ard factors.

First, while there are strong socio-economic differences
between urban north-west Senegal and rural south-east
Senegal (i.e. the KKT area), socio-economic conditions
and access to malaria prevention may be more homoge-
neous within the KKT area, particularly since all three
regions (Kolda, Kédougou and Tambacounda) are tar-
geted by malaria control interventions (e.g. SMC, mass
ITN distribution) [65]. Consequently, vulnerability may
play a lesser role in explaining malaria prevalence in this
area, or the model may not accurately capture its effects.
Indeed, the 2020-21 MIS data were collected in the dry
season, when the number of control interventions and
the percentage of households owning ITNs are lower (see
Table S6, Supplementary Material 4). As a result, differ-
ences in malaria prevalence in the dry season cannot be
explained by this factor alone. Furthermore, owning an
ITN does not necessarily mean using it. While we did not

include ITN use as a covariate, patterns of ITN use may
fluctuate more significantly during the dry season, poten-
tially influencing malaria risk more. Furthermore, malaria
hotspots that emerge in the dry season may persist in an
environment that remains conducive to mosquito breed-
ing during the unfavourable season. In this context, haz-
ard factors may be more critical: if vulnerable populations
are present in areas with low vector suitability, transmis-
sion may not occur. During the rainy season, however,
malaria may spread more widely due to increased envi-
ronmental suitability. Therefore, differences in malaria
prevalence may be partly explained by other vulnerability
factors, and hotspots may be due to ‘hotpops’ (i.e. popu-
lations that maintain malaria transmission [10]). Lastly,
differences in the importance of hazard and vulnerability
factors may be due to geographic differences in transmis-
sion intensity rather than seasonality. Hazard factors may
be more important in high-transmission settings (e.g. the
KKT area), while vulnerability may play a greater role in
areas of low transmission (e.g. where disease persists due
to mobile livelihoods despite low environmental suitabil-
ity). We further suggest how future work could test these
hypotheses.

Key risk factors

Among the significant vulnerability factors affect-
ing malaria, we found that having an ITN for every
two people in the household had a protective effect on
malaria prevalence at the national level (i.e. for the 2017
DHS). A similar relationship between ITN coverage and
malaria in children and/or adolescents was observed
in previous studies in Senegal [67, 68, 132] and Uganda
[48]. However, the effect of prevention indicators such
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as ITN coverage on malaria remains unclear in the lit-
erature, with non-protective effects of ITN coverage
also reported in Ghana [60], while other studies found
no significant association in Nigeria [124] and Tanzania
[133]. In addition to ITN coverage, malaria prevalence
was positively associated with anaemia prevalence in
children—consistent with previous findings [134, 135]—
and with walking time to health facilities. Walking time
to health facilities is a limiting factor in access to health
care, with long distances and natural barriers such as
rivers and mountains posing significant challenges. In
Senegal, geographic accessibility to health facilities var-
ies widely across the country, with 5% of women aged
15-49 reporting difficulty accessing health facilities due
to distance, compared to 50% in Tambacounda (based on
2017 DHS estimates) [83]. Distances to health facilities
are greater in the KKT area, where there are fewer roads,
and heavy rains during the rainy season (i.e. the malaria
transmission season) can lead to impassable flooded
roads. Walking distances should be considered in rela-
tion to the status of the individual. For example, shorter
distances may be more challenging for pregnant women
or women with young children, who are the most vulner-
able to malaria. It should be noted, however, that access
to health care is multifaceted and goes beyond the geo-
graphic distance to health facilities captured in this study,
as many factors influence the decision to seek care. Based
on the 2017 DHS in Senegal, 53% of women aged 15-49
face at least one problem in accessing health care, with
the main problems related to financial accessibility (45%),
geographical accessibility (22%), reluctance to go alone
(14%), and obtaining permission to seek care (7%) [83]. In
a survey representative of Senegal’s informal sector [136],
where most workers are employed, 35% of respondents
reported not seeking care when ill, with health-seeking
behaviour stratified by income and type of residence.
Poorer and rural households were less likely to seek care,
even though the risk of malaria is higher in rural areas
and poverty increases vulnerability [117]. The quality of
health services can also influence health-seeking behav-
iour; if people are dissatisfied with the quality of health
care or lack confidence in formal health services, they
may turn to alternative sources, such as traditional heal-
ers or local shopkeepers, for malaria treatment [117].

In addition to vulnerability factors, we also identified
important hazard factors influencing malaria prevalence
in this study. At the national level (i.e. 2017 DHS), malaria
prevalence was positively associated with distance to
shrubland and negatively associated with the NDMI, sug-
gesting that malaria prevalence increases as the water
content of leaves and vegetation decreases. Although
this sign of the relationship is not expected, such a nega-
tive correlation has also been found in [19] during the
dry season in some areas of Ethiopia. Furthermore, the
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areas in Senegal with the higher NDMI values are found
in the regions crossed by the Casamance River and where
malaria transmission is low. In the KKT area (i.e. based
on 2020-21 MIS data), malaria prevalence decreased
with increasing day LST. In this area, day LST (with an
average of 36 °C) can largely exceed the 32 °C upper
suitability threshold for Anopheles mosquitoes [102],
explaining the negative relationship between day LST
and malaria prevalence. This is consistent with previous
work in Ghana [137] and Uganda [48], where malaria
prevalence decreased at temperatures above 29 °C. Pre-
vious work has shown that significant environmental
factors and the sign of their relationship with malaria
prevalence can change depending on the season consid-
ered [137]. Mitchell et al. 2022 [138] also showed that the
strength of the relationship varies according to the level
of transmission.

Spatial trends in malaria risk

Other important outcomes of this study are 1 km reso-
lution maps of posterior predicted malaria prevalence in
children under five. At the national level (2017), predicted
malaria prevalence shows an overall increasing gradient
from northwest to southeast (see Fig. 5), with hotspots in
regions of very low to moderate transmission (see Fig. 6).
Several malaria hotspots have been detected in Dakar
(e.g. Dakar-Centre, Rufisque, Pikine, Keur Massar) and
other cities (e.g. Touba, Thies, Kaolack), although some
of these hotspots (e.g. Dakar-Centre) are associated with
high uncertainty estimates indicating low confidence
in the predictions. Previous studies have also identified
malaria hotspots in Pikine (Dakar), as it combines opti-
mal conditions for mosquito vectors due to the presence
of an urban wetland (the Great Niaye of Pikine), along-
side high population density in unplanned settlements
[139-141]. Other research has reported the widespread
presence of mosquito larval habitats in Touba, Kaolack
and Diourbel [142, 143], as well as high entomological
inoculation rates (e.g. up to 40 infectious bites per person
per year in Kaolack) [142].

In recent years, the burden of malaria has increased in
SSA cities [106, 121], and more studies are focusing on
mapping malaria risk at the intra-urban scale [61, 81, 106,
107, 121]. Malaria burden has also increased in Dakar [65,
144] and Touba (Diourbel), particularly among children
in Quranic schools (Daaras), where sleeping arrange-
ments (e.g. sleeping outdoors or on the floor) limit ITN
use [142]. Cities can also host religious gatherings such
as the Grand Magal of Touba, which gathers 4 to 5 mil-
lion pilgrims from Senegal and neighbouring countries
annually [145, 146]. The overcrowding, lack of sanitary
facilities, limited medical resources and the storage of
water in open basins during this event all facilitate the
transmission of malaria [143, 145, 146]. Urban areas pose
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a particularly significant challenge in terms of malaria,
with high population density amplifying the potential for
pathogen spread [16]. Furthermore, our findings show
that although malaria prevalence is generally lower in
western urban areas of Senegal, the absolute number of
infections can still be substantial (see Fig. 5c), sometimes
surpassing that in high-prevalence rural regions in the
KKT area due to the much larger urban population size.

Our predictive maps also revealed higher malaria
prevalence in the KKT area, with several high-risk areas.
In 2017, one such area coincides with Niokolo-Koba
National Park, where environmental conditions (e.g.
dense vegetation) may favour mosquito vectors and geo-
graphical access to health facilities is restricted (thereby
leading to high predicted malaria prevalence in the 2017
model, see associations in Table 4). However, malaria
transmission is likely to be limited in this area due to the
very low density of human hosts, and it is also associated
with high prediction uncertainty, likely due to the lack of
nearby sampling clusters. Other high-risk areas are found
at the border with neighbouring countries. The KKT area
is an area of significant migration between Senegal and
neighbouring countries (both immigration and emigra-
tion from and to Mali, and mainly immigration from
Guinea and Guinea-Bissau) [147]. Some livelihoods may
facilitate the importation of malaria. For example, long-
distance truck drivers may be more exposed to mos-
quito vectors due to limited access to health services
and accommodation, and frequent outdoor stops [148].
Traditional gold miners are also a mobile population
who are frequently exposed to breeding sites through
excavation activities that create stagnant bodies of water
[149]. In addition, public policy on malaria often differs
from country to country [150]. The lack of harmonisa-
tion of regional policies between countries is a major risk
in the case of migration, as migrants become reservoirs
of malaria [150]. In the context of malaria elimination,
such high levels of mobility are likely to make elimina-
tion particularly challenging, as population movements
can lead to continuous re-introduction of the pathogen.
We encourage future research to extend our malaria
risk mapping framework by incorporating indicators of
weekly or seasonal mobility into the factors that influence
malaria exposure (see Fig. 1). Mobile phone data (i.e. call
detail records) could be used to derive metrics of human
mobility in this context [151].

Limitations & future work

This study has a few limitations related to the data used,
which may explain the poor performance (R* of 0.13) of
the KKT models. First, the 2020-21 MIS data were col-
lected during the dry season. This was partially mitigated
by the use of RDTs that can detect malaria antigens for
several weeks after parasite clearance [77]. At the same
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time, this may also lead to an overestimation of preva-
lence in the dry season due to false positives. In addition,
RDTs fail to detect low-density asymptomatic infections
(less than 200 parasites/pL), which are frequent in high-
transmission settings such as the KKT area [77, 152]. In
addition to the timing of data collection, the quantity and
quality of malaria data are limited because the 2020-21
MIS covered only 124 observation clusters (400 clusters
for the 2017 DHS), and cluster coordinates are randomly
displaced by up to 5 km in rural areas (2 km in urban
areas) to preserve respondent anonymity. This displace-
ment may have a greater impact on model performance
at the regional level in the KKT area than at the national
level. In addition, this spatial displacement could com-
promise the effectiveness of DHS/MIS malaria epidemio-
logical data to be used to identify malaria hotspots and
associated risk factors, particularly if the displacement
distance exceeds the size of the hotspot. Another draw-
back of using DHS/MIS malaria prevalence data is that
only children aged 0-5 years are tested in the sample, so
adolescents and adults are not included in the predicted
prevalence estimates. However, achieving malaria elimi-
nation may require information on prevalence in all age
groups [57].

To partially account for these biases, we encour-
age future work to repeat these analyses using routine
malaria data from the DHIS2 platform, which centralises
malaria cases from health facilities in multiple countries,
including Senegal. In recent years, routine malaria data
have been increasingly used to model and map malaria
incidence [47, 48, 153-155], including at fine spatial reso-
lutions [11, 156—160]. Routine malaria data are reported
weekly or monthly at the health facility level, providing
estimates of the malaria burden over large time periods
and spatial scales [55]. In the context of highly heteroge-
neous malaria transmission in Senegal, these data could
be used to stratify malaria risk models according to sea-
sonality and regional groupings with different levels of
transmission—an approach that is difficult to implement
using DHS data due to the limited number of observation
clusters. Stratified risk models could then be compared
to assess the heterogeneity of malaria risk factors across
transmission levels and seasons. However, unlike preva-
lence, malaria incidence only captures those who seek
care for fever (e.g. 52% of the population of Senegal in
2017 [83]), potentially missing the most vulnerable popu-
lations. Therefore, treatment-seeking behaviour needs to
be accounted for in malaria incidence models.

There are also some limitations to comparing different
covariates for modelling malaria prevalence. First, while
we used other DHS indicators as predictors of malaria
prevalence (e.g. ITN ownership, anaemia prevalence),
these are observed data measured directly at the cluster
level, unlike other covariates that are model outcomes
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(e.g. livestock ownership). In addition, those DHS indi-
cators are subject to the same displacement as the
malaria prevalence data. This could potentially increase
the importance of these covariates relative to others
not extracted at the original survey cluster coordinates.
We expect this bias to be insignificant, as the displace-
ment of cluster coordinates has shown limited impact
on national-level models [79], and we have accounted
for displacement at covariate extraction. The accuracy
of the predictive maps may be affected by the accuracy
of the interpolated surfaces of DHS indicators, as errors
in interpolation may propagate. This could also explain
areas of high uncertainty in the predictive maps. Future
research could explore how to account for uncertainty
in covariate estimates within the Bayesian geostatistical
models and propagate it into the uncertainty of malaria
prevalence estimates.

Another limitation of this study is the temporal mis-
match between the vyearly averaged hazard-related
covariates (e.g. temperature and land cover) and the
seasonal timing of the survey. This misalignment may
have weakened the observed associations between these
covariates and malaria prevalence. Thanks to the high
revisit frequency of MODIS and Sentinel satellites, future
research could address this issue by incorporating sea-
sonal or lagged monthly environmental covariates into
spatio-temporal models that also account for the month
of data collection. These adjustments could reduce
uncertainty in model estimates. However, it is worth not-
ing that persistent cloud cover in tropical regions during
the rainy season limits the availability of satellite imagery
[88], making it challenging to compile covariates from the
wet season. Lastly, our malaria risk mapping framework
could also be extended to include indicators relating to
prevention and treatment behaviour (e.g. ITN use, ACT
use in children with fever), although it would require
addressing spatial interpolation challenges related to
short survey reference periods (e.g. sleeping under an
ITN the night before the survey) [118].

Strengths

This study presents an integrated malaria risk map-
ping framework, using a Bayesian geostatistical model
to combine multiple open-access data sources, includ-
ing high-resolution remotely sensed data representing
hazard factors (e.g. temperature, land cover) and house-
hold survey data capturing population vulnerability (e.g.
stunting in children, ITN access) and malaria prevalence.
Predictive maps generated using this framework enable
the identification of local malaria hotspots that may be
obscured in regional or health district estimates. Such
maps can therefore assist policymakers in planning tar-
geted malaria interventions and accelerating progress
towards elimination. A key advantage of Bayesian models
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is their ability to quantify prediction uncertainty, which
is often represented by the standard deviation or cred-
ible intervals (e.g. the 95% credible interval) of the pos-
terior distribution of malaria prevalence estimates [122].
A higher standard deviation indicates greater uncertainty
in the model’s estimates [122], potentially due to sparse
observations, small sample sizes, extreme covariate val-
ues or other factors [119, 161]. Uncertainty maps not only
highlight areas where predictions should be treated with
caution, but also inform the selection of surveillance sites
[162], particularly where high prevalence coincides with
high uncertainty [163]. Building on this, previous stud-
ies have demonstrated how to optimise survey locations
by minimising uncertainty in current predictive maps
[164]. Lastly, closely related to uncertainty estimates,
our framework can also be used to map the probability
that prevalence exceeds a policy-relevant threshold (i.e.
exceedance probabilities) [165], which can further inform
the prioritisation of interventions.

Conclusions

In this study, we present an integrated malaria risk map-
ping framework that combines hazard and vulnerability
factors and demonstrate its application in Senegal. Using
Bayesian geostatistical models, we found that integrating
both hazard and vulnerability factors generally enhances
malaria risk predictions, although models based on dry-
season surveys underperform and gain little from added
vulnerability factors. An increasing number of countries
are moving to malaria elimination. In this context, the
inclusion of all disease risk factors is essential to iden-
tify remaining hotspots and the factors that sustain the
disease. Predictive maps generated by this integrated
approach can then support decision-making for tar-
geted interventions in hotspots, such as case investiga-
tion. Improvements in the quality of malaria data, driven
by improved health management information systems,
will further enhance the utility of methods such as those
employed in this study. This is particularly pertinent
in the context of ongoing climate change, population
growth and urbanisation, all of which impact malaria vul-
nerability and hazard.
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